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Abstract
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1 Introduction

Despite similar market betas, firms with high book-to-market (value firms) earn higher average

stock returns than firms with low book-to-market (growth firms). This stylized fact is commonly

referred to as the value premium puzzle. In the U.S. sample from July 1963 to June 2017, the

high-minus-low book-to-market decile return is 0.47% per month (t = 2.53). However, its market

beta is only 0.07 (t = 0.86), giving rise to an economically large alpha of 0.43% (t = 1.89) in the

Capital Asset Pricing Model (CAPM) (Fama and French 1992). However, the CAPM performs

better in explaining the value premium in the long sample from July 1926 onward that contains the

Great Depression (Ang and Chen 2007). The high-minus-low return is on average 0.48% (t = 2.5),

but its CAPM alpha is only 0.19% (t = 0.99), with a large market beta of 0.45 (t = 3.87).

This paper studies whether incorporating rare disasters helps explain the value premium puzzle.

To this end, we embed disasters into a general equilibrium production economy with heterogeneous

firms. The resulting model features three key ingredients, including rare but severe declines in

aggregate productivity growth, asymmetric adjustment costs, and recursive utility. We calibrate

the model to disaster moments estimated from a historical, cross-country panel dataset (Nakamura,

Steinsson, Barro, and Ursua 2013). We quantify the model’s properties on simulated samples in

which disasters are not realized, as well as on samples in which disasters are realized.

We report three key quantitative results. First, our equilibrium model succeeds in replicating

the failure of the CAPM in explaining the value premium in finite samples in which disasters are

not materialized, as well as its better performance in samples in which disasters are materialized.

Intuitively, with asymmetric adjustment costs, when a disaster hits, value firms are burdened with

more unproductive capital, and find it more difficult to reduce capital than growth firms. As such,

value firms are more exposed to the disaster risk than growth firms. Combined with the household’s

high marginal utility in disasters, the model implies a realistic value premium.

More important, the disaster risk induces strong nonlinearity in the pricing kernel, making the
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linear CAPM a poor empirical proxy for the pricing kernel. When disasters are not realized in a

finite sample, the estimated market beta only measures the weak covariation of the value-minus-

growth return with the market excess return in normal times. However, the value premium is

primarily driven by the higher exposures of value stocks to disasters than growth stocks. Conse-

quently, the CAPM fails to explain the value premium in normal times. In contrast, when disasters

are realized, the estimated market beta provides a better account for the large covariation between

the value-minus-growth return and the pricing kernel. As such, the CAPM does better in capturing

the value premium in samples with disasters. In all, disasters help explain the value premium puzzle.

Second, our equilibrium model is also consistent with the beta “anomaly” that the empirical

relation between the market beta and the average return is too flat to be consistent with the CAPM

(Frazzini and Pedersen 2014). In simulated samples, with and without disasters, sorting on the

pre-ranking market beta yields an average return spread that is economically small and statistically

insignificant, a post-ranking beta spread that is economically large and significantly positive, and

a CAPM alpha spread that is economically large and often significantly negative.

The crux is that the estimated market beta is a poor proxy for the true beta. Intuitively, based

on prior 60-month rolling windows, the pre-ranking beta is the average beta over the prior five

years. In contrast, the true beta accurately reflects changes in aggregate and firm-specific state

variables. In simulations, the true beta often mean-reverts within a given rolling window, giving

rise to a negative correlation with the rolling beta, especially in samples without disasters. How-

ever, while the realization of disasters makes the rolling beta more aligned with the true beta, the

measurement errors remain large, and the beta “anomaly” persists even in the disaster samples.

Third, our equilibrium model, in which a nonlinear consumption CAPM holds by construction,

also largely replicates the empirical failure of the standard, linearized consumption CAPM. In sim-

ulations, with and without disasters, the consumption betas from regressing excess returns on the

aggregate consumption growth in the first-stage regressions are mostly insignificant and often even
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negative. In the second-stage cross-sectional regressions, the slopes for the price of consumption

risk are significantly negative, but the intercepts are significantly positive. Intuitively, the aggre-

gate consumption growth is a poor proxy for the pricing kernel based on recursive utility. The true

pricing kernel performs substantially better in the linearized consumption CAPM tests, especially

in the disaster samples. However, without the extreme observations from disasters, even the true

price kernel encounters difficulty in the linear tests. Finally, as a byproduct from using the 25 size

and book-to-market portfolios as testing assets for the consumption CAPM, our equilibrium model

also reproduces the stylized fact that the average value premium is stronger in small firms than in

big firms. Decreasing returns to scale and the disaster risk drive this result in our model, without

any limit to arbitrage per Shleifer and Vishny (1997).

Our work contributes to investment-based asset pricing theories. Building on Cochrane (1991)

and Berk, Green, and Naik (1999), early models explain the value premium with only one aggre-

gate shock. Carlson, Fisher, and Giammarino (2004) highlight operating leverage. Zhang (2005)

emphasizes asymmetric adjustment costs, which make assets in place harder to reduce, and cause

the assets to be riskier than growth options, especially in bad times. We turbocharge the asymme-

try mechanism via disasters. Cooper (2006) examines nonconvex adjustment costs and investment

irreversibility. Tuzel (2010) studies real estate capital, and shows that firms with high real estate

are riskier than firms with low real estate, since it depreciates more slowly. A limitation of these

one-shock models is that the CAPM roughly holds in simulations, as the CAPM alpha of the value

premium is economically too small relative to that in the post-1963 sample (Lin and Zhang 2013).

Several recent studies try to explain the failure of the CAPM by breaking the tight link between

the pricing kernel and the market excess return via multiple aggregate shocks, including short-run

and long-run shocks (Ai and Kiku 2013), investment-specific technological shocks (Kogan and Pa-

panikolaou 2013), stochastic adjustment costs (Belo, Lin, and Bazdresch 2014), and uncertainty

shocks in (Koh 2015). Although successful in explaining the failure of the CAPM in the post-1963

sample, these two-shock models contradict the long sample evidence by construction. We retain the
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single-factor structure, and fail the CAPM via disaster-induced nonlinearity in the pricing kernel.

Methodologically, most prior models are partial equilibrium in nature, with exogenous pric-

ing kernels. We instead construct a general equilibrium model with heterogenous firms, in which

consumption and the pricing kernel are endogenously determined. A major challenge in solving

the general equilibrium model is that the infinite-dimensional cross-sectional distribution of firms

is an endogenous, aggregate state variable. We adapt the approximate aggregation algorithm of

Krusell and Smith (1997, 1998) to overcome the computational difficulty. Substantively, the general

equilibrium allows us to explain the poor performance of the consumption CAPM in the data.1

We also contribute to the disaster literature, which uses disasters to explain the equity premium

puzzle, so far mostly in endowment economies. Barro (2006, 2009) revives the idea of Rietz (1988),

by calibrating the disaster model to a long, cross-country panel dataset. Gabaix (2012) and Wachter

(2013) use time-varying disaster probability to explain the market volatility and time series pre-

dictability. Gourio (2012) embeds disasters into an aggregate production economy to jointly explain

asset prices and business cycles. In an endowment economy with multiple assets, Martin (2013)

shows that return correlations arise endogenously to spike in disasters. To the best of our knowledge,

we provide the first equilibrium production model for the cross section with disasters. Integrating

the disaster literature with investment-based asset pricing, we show how disasters help resolve a

long-standing puzzle in the latter literature in explaining the failure of the (consumption) CAPM.2

1On the technical challenge as well as extreme importance of general equilibrium, Cochrane (2005a) writes: “Bring-
ing multiple firms in at all is the first challenge for a general equilibrium model that wants to address the cross-section
of returns. Since the extra technologies represent nonzero net supply assets, each ‘firm’ adds another state variable
to the equilibrium. Many of the above papers circumvent this problem by modeling the discount factor directly as a
function of shocks rather than specify preferences and derive the discount factor from the equilibrium consumption
process. Then each firm can be valued in isolation. This is a fine short cut in order to learn about useful specifications
of technology, but in the end, of course we don’t really understand risk premia until they come from the equilibrium
consumption process fed through a utility function (p. 67).” “The general equilibrium approach is a vast and largely
unexplored new land. The papers covered here are like Columbus’s report that the land is there. The pressing chal-
lenge is to develop a general equilibrium model with an interesting cross-section. The model needs to have multiple
‘firms;’ it needs to generate the fact that low-price ‘value’ firms have higher returns than high price ‘growth firms;’ it
needs to generate the failure of the CAPM to account for these returns, and it needs to generate the comovement of
value firms that underlies Fama and French’s factor model, all this with preference and technology specifications that
are at least not wildly inconsistent with microeconomic investigation. The papers surveyed here, while path-breaking
advances in that direction, do not come close to the full list of desiderata (p. 91–92, original emphasis).”

2Cochrane (2005a) emphasizes the importance of explaining the failure of the (consumption) CAPM: “[The value
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The rest of the paper is organized as follows. Section 2 presents the stylized facts, Section 3 con-

structs the equilibrium model, Section 4 reports the quantitative results, and Section 5 concludes.

2 Stylized Facts

This section documents the stylized facts to be explained. Section 2.1 presents the CAPM perfor-

mance, Section 2.2 the beta “anomaly,” and Section 2.3 the consumption CAPM.

2.1 The Failure of the CAPM

Table 1 reports the monthly CAPM regressions for the book-to-market deciles. The monthly re-

turns data for the deciles, the value-weighted market portfolio, and the one-month Treasury bill

rate are from Kenneth French’s data library. The data are from July 1926 to June 2017.

Panel A shows that consistent with Fama and French (1992), the CAPM has difficulty in ex-

plaining the value premium (the value-minus-growth decile return) in the sample after July 1963.

Moving from the growth decile to the value decile, the average excess return rises from 0.44% per

month to 0.91%, and the average return spread is 0.47% (t = 2.53). Despite the increasing relation

between book-to-market and the average excess return, the market beta is largely flat across the

deciles. The value-minus-growth decile has only a small market beta of 0.07 (t = 0.86). Accord-

ingly, its CAPM alpha is economically large, 0.43%, albeit marginally significant (t = 1.89). The

CAPM alpha is nearly identical in magnitude to the average value premium. The regression R2

is essentially zero. The Gibbons, Ross, and Shanken (GRS, 1989) test rejects the null hypothesis

that the alphas across all ten deciles are jointly zero at the 5% significance level.3

premium] puzzle is not so much the existence of value and growth firms but the fact that these characteristics
do not correspond to betas. None of the current models really achieves this step. Most models price assets by a
conditional CAPM or a conditional consumption-based model; the ‘value’ firms have higher conditional betas. Any
failures of the CAPM in the models are due to omitting conditioning information or the fact that the stock market
is imperfectly correlated with consumption. My impression is that these features do not account quantitatively for
the failures of the CAPM or consumption-based model in the data (p. 67–68).”

3In the original July 1963–December 1990 sample in Fama and French (1992), the average excess return goes
from 0.22% per month for the growth decile to 0.81% for the value decile, and the value premium is on average
0.59% (t = 2.41) (untabulated). However, the market beta decreases slightly from 1.08 for the growth decile to 1.05
for the value decile. As a result, the CAPM alpha for the value-minus-growth decile is 0.6% (t = 2.17).
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Table 1 : The CAPM Regressions for the Book-to-market Deciles

For each decile, this table reports the average excess return, denoted E[Re], the CAPM alpha,
α, the market beta, β, their t-values adjusted for heteroscedasticity and autocorrelations (tRe , tα,
and tβ, respectively), and the goodness-of-fit, R2, from the time series CAPM regression. L, H,
and H−L are the growth, value, and value-minus-growth deciles, respectively. FGRS is the GRS
F -statistic testing that the alphas across all ten deciles are jointly zero, and pGRS its p-value.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: July 1963 to June 2017 (FGRS = 2.04, pGRS = 0.03)

E[Re] 0.44 0.54 0.59 0.54 0.55 0.66 0.62 0.70 0.86 0.91 0.47
tRe 2.22 3.00 3.26 2.98 3.14 3.88 3.49 3.88 4.41 3.80 2.53
α −0.11 0.02 0.07 0.03 0.07 0.20 0.15 0.23 0.35 0.32 0.43
tα −1.23 0.44 1.17 0.39 0.80 2.21 1.23 2.00 3.03 2.04 1.89
β 1.06 1.00 0.99 0.98 0.91 0.88 0.92 0.91 0.98 1.13 0.07
tβ 41.66 42.06 40.88 32.43 28.19 23.30 19.35 18.26 22.65 17.47 0.86
R2 0.86 0.91 0.91 0.87 0.83 0.80 0.78 0.76 0.77 0.68 0.00

Panel B: July 1926 to June 2017 (FGRS = 2.05, pGRS = 0.03)

E[Re] 0.59 0.69 0.69 0.66 0.72 0.79 0.72 0.91 1.06 1.07 0.48
tRe 3.40 4.28 4.23 3.71 4.19 4.35 3.73 4.49 4.55 3.84 2.50
α −0.08 0.07 0.05 −0.02 0.07 0.11 0.00 0.16 0.22 0.11 0.19
tα −1.21 1.46 1.02 −0.38 0.92 1.32 0.02 1.82 1.94 0.74 0.99
β 1.01 0.95 0.97 1.05 1.00 1.03 1.10 1.14 1.28 1.46 0.45
tβ 52.73 27.62 59.98 22.11 27.29 14.85 17.73 16.11 14.32 14.49 3.87
R2 0.90 0.91 0.93 0.90 0.89 0.85 0.84 0.83 0.80 0.72 0.14

Panel C: July 1926 to June 1963 (FGRS = 1.48, pGRS = 0.14)

E[Re] 0.80 0.90 0.84 0.85 0.98 0.99 0.87 1.22 1.35 1.31 0.51
tRe 2.57 3.06 2.77 2.40 2.89 2.65 2.17 2.88 2.72 2.22 1.30
α −0.04 0.11 0.02 −0.10 0.07 0.01 −0.18 0.11 0.08 −0.14 −0.10
tα −0.44 1.60 0.25 −1.12 0.71 0.07 −1.27 0.89 0.38 −0.50 −0.31
β 0.98 0.91 0.96 1.10 1.06 1.14 1.23 1.30 1.48 1.68 0.71
tβ 46.35 19.18 47.86 16.67 24.69 12.60 17.77 16.90 15.07 14.50 5.31
R2 0.94 0.92 0.94 0.92 0.93 0.89 0.89 0.89 0.84 0.77 0.31

Panel B shows that the CAPM explains the value premium in the long sample from July 1926

to June 2017, consistent with Ang and Chen (2007). Their sample ends in December 2001, and

we replicate their result in our extended sample. The average excess return varies from 0.59% per

month for the growth decile to 1.07% for the value decile. The value premium is on average 0.48%

(t = 2.5), which is close to 0.47% in the post-1963 sample. More important, the CAPM explains the

value premium, with a small alpha of 0.19% (t = 0.99) and a large market beta of 0.45 (t = 3.87).

Relative to the post-1963 sample, the regression R2 rises considerably from zero to 14%. However,

the GRS test still rejects the null that the CAPM alphas are jointly zero across the ten deciles.
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Panel C shows that the CAPM does a good job in explaining the value premium from July

1926 to June 1963. The value-minus-growth decile return is on average 0.51% per month, albeit

insignificant (t = 1.3). The magnitude of the value premium is comparable to that in the post-1963

sample. Most important, its market beta is economically large and statistically significant, 0.71

(t = 5.31), in sharp contrast to the market beta of 0.07 (t = 0.86) in the post-1963 sample. As a

result, the CAPM alpha becomes even negative before 1963, −0.1% (t = −0.31), which is in sharp

contrast to 0.43% (t = 1.89) after 1963. The regression R2 of 31% before 1963 is twice as large as

that in the full sample, 14%, in sharp contrast to the R2 of zero after 1963. Finally, the GRS test

fails to reject the CAPM with the book-to-market deciles (p-value = 0.14).

To shed further light on the differences across the pre- and post-1963 samples, Table 2 reports

large market swings with market excess returns below 1.5 and above 98.5 percentiles of the em-

pirical distribution, as well as the corresponding months and value-minus-growth decile returns.

There are in total 32 such observations, 23 of which are from the Great Depression. When the

market excess return is very low, the value-minus-growth return tends to be very low, and when

the market excess return is very high, the value-minus-growth return tends to be very high. Their

correlation is 0.72 across these observations. In particular, the lowest value premium is −20.35%

in March 1938, which comes with an abysmally low market excess return of −23.82%. The highest

value premium is 67.95% in August 1932, which comes with an exuberantly high market excess

return of 37.06%. More recently, following the bankruptcy of Lehman Brothers, the market excess

return is −17.23% in October 2008, in which the value-minus-growth return is −9.64%.

Figure 1 presents the scatter plots and fitted market regression lines for the value-minus-growth

decile return for the long sample (Panel A) and the post-1963 sample (Panel B). Panel A highlights

in red the observations with monthly market excess returns below 1.5 and above 98.5 percentiles

of the empirical distribution. These observations clearly contribute to the market beta of 0.45

(t = 3.87) for the value-minus-growth decile in the long sample. In contrast, Panel B shows that

large swings in the stock market are scarce in the post-1963 sample, giving rise to a largely flat

7



Table 2 : Large Swings in the Stock Market Returns and the Corresponding

Value-minus-growth Decile Returns, July 1926–June 2017

This table reports market excess returns, MKT, below 1.5 and above 98.5 percentiles in the long
U.S. sample. H−L is the value-minus-growth decile return. Returns are in monthly percent.

Month MKT H−L Month MKT H−L

November 1928 11.81 −0.29 August 1933 12.05 3.76
October 1929 −20.12 7.60 January 1934 12.60 35.20
June 1930 −16.27 −3.60 September 1937 −13.61 −10.56
May 1931 −13.24 −3.37 March 1938 −23.82 −20.35
June 1931 13.90 14.57 April 1938 14.51 9.16
September 1931 −29.13 −4.03 June 1938 23.87 11.15
December 1931 −13.53 −16.22 September 1939 16.88 57.22
April 1932 −17.96 −2.65 May 1940 −21.95 −15.59
May 1932 −20.51 4.09 October 1974 16.10 −13.57
July 1932 33.84 44.54 January 1975 13.66 19.72
August 1932 37.06 67.95 January 1976 12.16 15.03
October 1932 −13.17 −12.80 March 1980 −12.90 −8.78
February 1933 −15.24 −5.70 January 1987 12.47 −2.83
April 1933 38.85 20.04 October 1987 −23.24 −1.20
May 1933 21.43 44.85 August 1998 −16.08 −3.27
June 1933 13.11 10.40 October 2008 −17.23 −9.64

regression line. In all, the CAPM does a good job in explaining the value premium in the long

sample that includes the Great Depression, but largely fails in the short post-1963 sample.

2.2 The Beta “Anomaly”

Refuting Ang and Chen (2007) who argue that the CAPM explains the value premium in the long

sample, Fama and French (2006) emphasize the CAPM’s problem that the cross-sectional variation

in the market beta goes unrewarded. This flat relation between the market beta and the average

return, known as the beta “anomaly,” has a long tradition in empirical asset pricing (Fama and

MacBeth 1973; Fama and French 1992; and Frazzini and Pedersen 2014).

Table 3 presents the average excess returns and CAPM regressions across the market beta

deciles. At the end of June of each year t, NYSE, Amex, and NASDAQ stocks are sorted into deciles

based on the NYSE breakpoints of the pre-ranking betas from rolling-window CAPM regressions

in the prior 60 months (24 months minimum). Monthly value-weighted returns are calculated from

July of year t to June of t+1, and the deciles are rebalanced in June. The sample starts in July 1928

because we use the data from the first 24 months to estimate the pre-ranking betas in June 1928.
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Figure 1 : The CAPM Regressions for the Value-minus-growth Decile, July 1926–June 2017

The figure presents the scatter plot and fitted line for the time series CAPM regression of the value
premium (the value-minus-growth decile return). In Panel A, the monthly market excess returns
below the 1.5 and above 98.5 percentiles are dated in red. Returns are in monthly percent.

Panel A: July 1926–June 2017 Panel B: July 1963–June 2017
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Panel A shows that, contradicting the CAPM, the relation between the market beta and the

average return in the data is largely flat. Moving from the low to high beta decile, the average excess

return rises from 0.52% per month to 0.55%, and the tiny spread of 0.03% is within 0.2 standard

errors from zero. Sorting on the pre-ranking beta yields an economically large post-ranking beta

spread of 1.06 (t = 11.81) across the extreme deciles. As such, the CAPM alpha for the high-minus-

low market beta decile is economically large, −0.52%, albeit marginally significant (t = −1.94).

From Panel B, the sample from July 1928 onward yields largely similar results. The average

excess return varies from 0.58% per month for the low beta decile to 0.75% for the high beta decile,

and the small spread of 0.16% is within one standard error from zero. The pre-ranking beta sort

again yields an economically large spread of 1.13 (t = 18.82) in the post-ranking beta across the

extreme deciles. As such, the CAPM alpha for the high-minus-low beta decile is negative, both

economically large, −0.55%, and statistically significant (t = −2.81).
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Table 3 : The CAPM Regressions for the Pre-ranking Market Beta Deciles

For each decile, this table reports the average excess return, E[Re], the CAPM alpha, α, the post-
ranking market beta, β, t-statistics adjusted for heteroscedasticity and autocorrelations (tRe , tα,
and tβ, respectively), and the goodness-of-fit, R2, from the time series CAPM regressions. L, H,
and H−L are the low, high, and high-minus-low pre-ranking market beta decile. FGRS is the GRS
F -statistic testing that the alphas across all ten deciles are jointly zero, and pGRS its p-value.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: July 1963–June 2017 (FGRS = 1.39, pGRS = 0.18)

E[Re] 0.52 0.52 0.56 0.58 0.69 0.55 0.67 0.55 0.57 0.55 0.03
tRe 3.85 3.64 3.45 3.38 3.75 2.86 3.14 2.42 2.23 1.72 0.11
α 0.22 0.17 0.13 0.12 0.18 0.01 0.07 −0.08 −0.13 −0.29 −0.52
tα 2.11 1.76 1.69 1.42 2.17 0.18 0.85 −0.82 −1.10 −1.49 −1.94
β 0.57 0.68 0.82 0.87 0.98 1.03 1.15 1.22 1.34 1.62 1.06
tβ 12.39 17.21 20.57 20.68 28.13 31.21 50.25 41.76 35.41 30.92 11.81
R2 0.53 0.68 0.77 0.79 0.86 0.86 0.88 0.86 0.84 0.77 0.43

Panel B: July 1928–June 2017 (FGRS = 2.41, pGRS = 0.01)

E[Re] 0.58 0.63 0.65 0.74 0.83 0.72 0.79 0.73 0.77 0.75 0.16
tRe 5.03 4.66 4.41 4.46 4.54 3.71 3.74 3.11 2.94 2.44 0.66
α 0.22 0.16 0.13 0.14 0.17 0.01 0.02 −0.13 −0.17 −0.33 −0.55
tα 2.87 2.22 2.21 2.31 2.49 0.20 0.27 −1.51 −1.68 −2.29 −2.81
β 0.57 0.73 0.83 0.94 1.05 1.11 1.22 1.36 1.48 1.70 1.13
tβ 22.86 30.50 36.61 40.31 41.41 39.61 48.26 36.17 26.65 40.93 18.82
R2 0.66 0.81 0.85 0.88 0.90 0.90 0.91 0.90 0.88 0.84 0.57

2.3 The Failure of the Consumption CAPM

To test the consumption CAPM, we use two-stage Fama-MacBeth (1973) cross-sectional regressions

because the aggregate consumption growth is not tradable (Breeden, Gibbons, and Litzenberger

1989; and Jagannathan and Wang 2007). To ensure a sufficient number of observations in the

second-stage regressions, we use the 25 size and book-to-market portfolios as testing assets (Fama-

French 1996). In the first stage, we regress excess returns on the aggregate consumption growth, gCt:

Re
it = ai + βCi gCt + eit, (1)

in which Re
it is portfolio i’s excess return, β

C
i the consumption beta, and eit the residual.

In the second stage, we regress portfolio excess returns on the consumption betas:

Re
it = φ0 + φ1β

C
i + αi, (2)
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in which φ0 is the intercept, φ1 the price of consumption risk, and αi the residual. The consumption

CAPM predicts that φ0+αi = 0, φ1 is significantly positive, and the expected risk premium equals

φ1β
C
i . We test φ0 + αi = 0 with a χ2-test, which is the cross-sectional counterpart of the time

series GRS test (Cochrane 2005b, equation [12.14]). We adjust the variance-covariance matrix of

the pricing errors with the Shanken (1992) method (see Cochrane 2005b, equation [12.20]).

We obtain consumption data from National Income and Product Accounts (NIPA) Table 7.1

from Bureau of Economic Analysis. Consumption is the sum of per capita nondurables plus services

in chained dollars. The annual series is from 1929 to 2016, and the quarterly series from the first

quarter (Q1) of 1947 to the second quarter (Q2) of 2017. The annual series contains the Great

Depression, but the quarterly series does not. We test the consumption CAPM with both annual

and quarterly data. We also implement the Jagannathan-Wang (2007) fourth-quarter consumption

growth model, in which annual consumption growth is calculated with only the fourth-quarter con-

sumption data. The rationale is that investors are more likely to make their consumption and port-

folio choice decisions simultaneously in the fourth-quarter because the tax year ends in December.

Table 4 reports the average excess returns and consumption betas for the 25 size and book-

to-market portfolios. The portfolio returns data are from Kenneth French’s Web site. Panel A

shows that in the 1930–2016 annual sample, the average value premium is stronger in small firms

than in big firms. In the smallest quintile, the value-minus-growth quintile return is on average

12.52% per annum (t = 4.31), whereas in the biggest quintile, only 4.12% (t = 1.74). The pattern

is similar in the 1947:Q2–2017:Q2 quarterly sample. The value premium is on average 2.4% per

quarter (t = 5.01) in the smallest quintile, but only 0.57% (t = 1.33) in the biggest quintile. The

results from the shorter 1948–2016 annual sample are largely similar.

Panel A also shows that the consumption betas estimated from annual consumption growth do

not align with the average returns across the 25 portfolios. For example, despite the high average

excess return, 18.56% per annum, of the small-value portfolio, relative to only 6.04% of the small-
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Table 4 : The Average Excess Returns and Consumption Betas for the 25 Size and

Book-to-market Portfolios

For each portfolio, this table reports average excess return, E[Re], and consumption beta, βC ,
and their t-values adjusted for heteroscedasticity and autocorrelations, tRe and tβC , respectively.
Returns in Panels A and C are in annual percent, and those in Panel B in quarterly percent.

L 2 3 4 H L 2 3 4 H

Panel A: Annual consumption growth, 1930–2016
E[Re] tRe

Small 6.04 10.65 13.73 16.82 18.56 1.48 2.44 3.85 4.44 4.57
2 9.02 12.32 13.33 14.90 16.03 2.51 4.00 4.25 4.51 4.67
3 9.27 11.83 11.88 13.73 14.72 3.09 4.35 4.38 4.69 4.34
4 8.82 9.68 11.49 12.83 13.16 3.48 3.76 4.16 4.45 3.69
Big 7.46 7.38 8.90 8.36 11.58 3.44 3.62 3.92 3.12 3.72

βC tβC

Small 2.80 0.66 1.63 1.86 1.58 1.52 0.19 0.70 0.69 0.57
2 1.25 1.72 0.88 1.25 1.68 0.54 0.83 0.41 0.53 0.78
3 0.29 1.11 1.77 2.12 2.15 0.14 0.64 0.99 1.15 0.94
4 0.38 0.37 1.32 1.36 0.47 0.25 0.20 0.70 0.66 0.18
Big 1.05 0.59 1.79 2.26 −0.88 0.93 0.47 1.18 1.19 −0.28

Panel B: Quarterly consumption growth, 1947:Q2–2017:Q2
E[Re] tRe

Small 1.25 2.58 2.57 3.23 3.65 1.39 3.36 3.78 4.93 5.06
2 1.74 2.58 2.86 3.01 3.38 2.21 3.90 4.78 5.02 5.00
3 1.96 2.61 2.54 2.99 3.26 2.79 4.40 4.63 5.26 5.08
4 2.18 2.18 2.60 2.74 2.93 3.41 3.97 4.83 5.06 4.45
Big 1.90 1.90 2.18 1.98 2.47 3.74 4.10 4.99 3.91 4.26

βC tβC

Small 4.22 4.73 3.43 3.63 3.94 2.46 3.23 2.54 2.84 2.63
2 3.01 2.89 2.91 3.07 3.60 2.08 2.34 2.65 2.62 2.66
3 2.85 2.59 2.57 2.63 2.99 2.02 2.18 2.43 2.22 2.55
4 2.47 2.16 2.54 2.39 3.77 1.86 1.92 1.94 2.04 2.59
Big 2.62 1.94 1.97 2.60 2.80 2.54 1.93 2.09 1.99 2.44

Panel C: Fourth-quarter consumption growth, 1948–2016
E[Re] tRe

Small 5.38 11.47 11.21 14.25 16.17 1.30 3.14 3.61 4.69 4.77
2 6.95 10.71 12.30 13.18 14.48 2.08 3.93 4.53 4.86 4.82
3 7.72 11.03 10.74 13.14 14.25 2.74 4.42 4.57 4.78 4.85
4 8.77 9.00 11.21 12.00 12.73 3.35 3.97 4.45 4.74 4.25
Big 7.95 7.74 9.41 8.54 10.81 3.47 3.92 4.59 3.58 3.94

βC tβC

Small 3.83 5.50 4.35 5.05 6.09 1.43 2.32 2.01 2.73 2.69
2 3.07 3.17 4.48 5.08 6.34 1.36 1.60 2.58 3.07 3.50
3 2.64 3.89 4.03 4.50 5.68 1.20 2.13 2.45 2.26 3.06
4 2.22 3.02 4.23 5.03 5.95 1.06 1.60 2.02 2.78 2.77
Big 3.04 2.86 3.34 5.19 5.12 1.67 1.84 2.11 2.89 2.66
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growth portfolio, the consumption beta of the former is lower than that of the latter, 1.58 versus

2.8. Similarly, Panel B shows that the consumption betas estimated from quarterly consumption

growth do not align either with the average returns. The contrast in the average return between the

small-growth and small-value portfolios is 1.25% versus 3.65% per quarter, but the consumption

beta goes in the wrong direction, 4.22 versus 3.94. Finally, consistent with Jagannathan and Wang

(2007), the consumption betas estimated from fourth-quarter consumption growth align better with

the average returns. The small-value portfolio has a consumption beta of 6.09, which is higher than

3.83 of the small-growth portfolio, going in the right direction in explaining the average returns.

Table 5 reports the second-stage cross-sectional tests of the consumption CAPM. From Panel A,

the consumption CAPM fails in the annual sample from 1930 to 2016. The estimate of the price of

consumption risk, φ1, is economically small, 0.58% per annum, and statistically insignificant, with

both the Fama-MacBeth and Shanken-adjusted t-values below 1.2. In contrast, the intercept, φ0,

is economically large, 10.97%, and highly significant, with both t-values around four. The χ2 test

strongly rejects the null that the pricing errors are jointly zero across the testing assets (p-value =

0.00). Finally, the cross-sectional R2 is only 2.13%, indicating that average excess return and the

consumption beta are poorly aligned across the testing assets.

The poor alignment is shown in Panel A of Figure 2, which plots average excess returns predicted

by the consumption CAPM estimated from the annual data against average realized excess returns.

The scatter plot is largely horizontal, indicating little explanatory power. In particular, the small-

growth portfolio (denoted “11”) earns on average only 6.04% per annum, and the small-value

portfolio (“15”) 18.56%. In contrast, the small-growth portfolio has a higher consumption beta than

the small-value portfolio, 2.8 versus 1.58. Combined with the φ1 estimate of 0.58%, the consumption

CAPM predicts a negative small-stock value premium of −0.71%, in contrast to 12.52% in the data.

Using the quarterly sample from 1947 onward yields largely similar results. Panel B of Table

5 shows that the price of consumption risk, φ1, is estimated to be 0.22% per quarter, which is

13



Table 5 : Cross-sectional Regression Tests of the Consumption CAPM

This table reports the Fama-MacBeth cross-sectional regression tests of the consumption CAPM
in equation (2). Testing assets are the 25 Fama-French size and book-to-market portfolios.
Consumption betas are estimated from time-series regressions of portfolio excess returns on the
aggregate consumption growth. Panel A uses annual consumption growth from 1930 to 2016,
Panel B quarterly consumption growth from the second quarter (Q2) of 1947 to the second quarter
of 2017, and Panel C the fourth-quarter consumption growth from 1948 to 2016. φ0 is the intercept,
and φ1 the slope, which provides the price of the consumption risk in the second-stage cross-sectional
regressions. tFM is the Fama-MacBeth, and tS the Shanken-adjusted t-values. χ2 is the χ2-statistic
testing that all the pricing errors, φ0 +αi, are jointly zero (Cochrane 2005b, equation [12.14]). We
adjust the variance-covariance matrix of the pricing errors with the Shanken (1992) method (see
Cochrane 2005b, equation [12.20]). pχ2 is the p-value for the χ2 test, with 23 degrees of freedom.
R2 is the average goodness-of-fit coefficient of the cross-sectional regressions. The estimates of φ0
and φ1 are annual percent in Panels A and C, and in quarterly percent in Panel B.

Panel A: Annual, Panel B: Quarterly, Panel C: Fourth-
1930–2016 1947:Q2–2017:Q2 quarter, 1948–2016

φ0 φ1 φ0 φ1 φ0 φ1

Estimates 10.97 0.58 1.88 0.22 3.30 1.75
tFM 4.14 1.16 3.73 1.12 1.23 3.44
tS 3.99 1.13 3.42 1.03 0.77 2.23

χ2 152.19 100.00 55.85
pχ2 0.00 0.00 0.00
R2 0.02 0.07 0.60

economically small and statistically insignificant, with the Fama-MacBeth and Shanken-adjusted t-

values both below 1.2. In contrast, the intercept, φ0, is 1.88%, which is economically large and highly

significant, with t-values above 3.4. The χ2 test again strongly rejects the null that the pricing errors

are jointly zero across the testing assets. The cross-sectional regression R2 remains low, 7.11%.

Panel B of Figure 2 again shows the poor alignment between average predicted and average

realized excess returns. The small-growth portfolio earns on average 1.25%, and the small-value

portfolio 3.65%. However, the small-growth portfolio has a higher consumption beta than the

small-value portfolio, 4.22 versus 3.94. Combined with the φ1 estimate of 0.22%, the consumption

CAPM predicts a negative small-stock value premium of −0.06%, in contrast to 2.4% in the data.

With an extended sample from 1948 to 2016, we replicate the superior performance of the

fourth-quarter consumption growth model that Jagannathan and Wang (2007) document in their

1954–2003 sample. Panel C of Table 5 reports that the price of consumption risk is 1.75% per an-

14



Figure 2 : Average Predicted Excess Returns versus Average Realized Excess Returns, the

Consumption CAPM

This figure plots the average predicted against average realized excess returns of the 25 size and
book-to-market portfolios. Each two-digit number represents one portfolio, with the first digit
referring to the size quintile (“1” the smallest, “5” the biggest), and the second digit the book-to-
market quintile (“1” the lowest, “5” the highest). Panel A uses annual consumption growth from
1930 to 2016, Panel B quarterly consumption growth from the second quarter (Q2) of 1947 to the
second quarter of 2017, and Panel C the fourth-quarter consumption growth from 1948 to 2016.
The predicted excess return of portfolio i is φ1β

C
i , in which βCi is its consumption beta from the

first-stage regression, and φ1 the price of consumption risk from the second-stage regression.

Panel A: Annual, 1930–2016
Panel B: Quarterly,
1947:Q2–2017Q2

Panel C: Fourth-quarter,
1948–2016
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num, with a Fama-MacBeth t-value of 3.44 and a Shanken-adjusted t-value of 2.23. The intercept

of cross-sectional regressions is only 3.3%, which is insignificant with t-values below 1.3. However,

the χ2 test still strongly rejects the null that the pricing errors are jointly zero across the testing

assets. More impressively, the cross-sectional R2 is 60%.

Panel C of Figure 2 shows that the scatter plot of average predicted versus average realized

excess returns is better aligned with the 45-degree line. The small-growth portfolio earns on average

5.38%, in contrast to 16.17% for the small-value portfolio. Going in the right direction as the average

returns, the small-growth portfolio has a lower consumption beta than the small-value portfolio, 3.83

versus 6.09. Combined with the φ1 estimate of 1.75%, the Jagannathan-Wang consumption CAPM

predicts a positive small-stock value premium of 3.96%. Although its magnitude is lower than

10.79% in the data, the model is a substantial improvement over the standard consumption CAPM.
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3 An Equilibrium Model

Our general equilibrium model with disasters and heterogeneous firms draws elements from the dis-

aster model of Rietz (1988) and Barro (2006, 2009) as well as the investment model of Zhang (2005).

The economy is populated by a representative household with recursive utility and heterogenous

firms. The firms take the household’s intertemporal rate of substitution as given when determining

optimal policies. The production technology is subject to both aggregate and firm-specific shocks.

The aggregate shock contains normally distributed states as well as a disaster and a recovery state.

3.1 Preferences

The representative household has recursive utility, Ut, defined over aggregate consumption, Ct:

Ut =

[
(1− ̺)C

1− 1
ψ

t + ̺
(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

] 1
1−1/ψ

, (3)

in which ̺ is the time discount factor, ψ the intertemporal elasticity of substitution, and γ the

relative risk aversion (Epstein and Zin 1989). The pricing kernel is given by:

Mt+1 = ̺

(
Ct+1

Ct

)− 1
ψ


 U1−γ

t+1

Et

[
U1−γ
t+1

]




1/ψ−γ
1−γ

. (4)

We adopt the recursive utility to delink the relative risk aversion, γ, from the intertemporal

elasticity of substitution, ψ. Their values are both higher than unity in our calibration (Section

4.1). Nakamura, Steinsson, Barro, and Ursua (2013) show that a low value of ψ less than unity

implies counterfactually a surge in stock prices at the onset of disasters. The reason is that entering

a (persistent) disaster state generates a strong desire to save, as consumption is expected to fall

substantially in the future. With a small ψ, this effect dominates the negative effect of the disaster

state on firms’ cash flows, raising their stock prices. Gourio (2012) makes a similar point in a

production economy that when ψ < 1, the onset of disasters counterfactually increases investment.
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3.2 Technology

Firms produce output with capital, and are subject to both aggregate and firm-specific shocks.

Output for firm i at time t, denoted Yit ≡ Y (Kit, Zit,Xt), is given by:

Yit = (XtZit)
1−ξKξ

it, (5)

in which ξ > 0 is the curvature parameter, Xt is the aggregate productivity, Zit is the firm-specific

productivity, and Kit is capital. Operating profits, denoted Πit, are defined as:

Πit = Yit − fKit, (6)

in which fKit, with f > 0, is the fixed costs of production. The fixed costs are scaled by capital

to ensure that the costs do not become trivially small along a balanced growth path.

The log aggregate productivity growth, gxt ≡ log(Xt/Xt−1), is specified as:

gxt = g + gt, (7)

in which g is the constant mean. We assume that gt follows a first-order autoregressive process:

gt+1 = ρggt + σgǫ
g
t+1, (8)

in which ǫgt+1 is a standard normal shock, and the unconditional mean of gt is zero.

The firm-specific productivity for firm i, Zit, has a transition function given by:

zit+1 = (1− ρz)z + ρzzit + σzǫ
z
it+1, (9)

in which zit ≡ logZit, z is the unconditional mean of zit common to all firms, and ǫzit+1 is an

independently and identically distributed standard normal shock. We assume that ǫzit+1 and ǫzjt+1

are uncorrelated for any i 6= j, and ǫgt+1 and ǫzit+1 are uncorrelated for all i.

17



3.3 Disasters

We follow Rouwenhorst (1995) to discretize the demeaned aggregate productivity growth, gt, into

a five-point grid, {g1, g2, g3, g4, g5}.
4 The grid is symmetric around the long-run mean of zero, and

even-spaced. The distance between any two adjacent grid point is given by 2σg/
√

(1− ρ2g)(ng − 1),

in which ng = 5. The Rouwenhorst procedure also produces a transition matrix, P̃ , given by:

P̃ =




p11 p12 . . . p15

p21 p22 . . . p25
...

...
. . .

...

p51 p52 . . . p55



, (10)

in which pij, for i, j = 1, . . . , 5, is the probability of gt+1 = gj conditional on gt = gi.
5

Alternatively, instead of the autoregressive process of gt in equation (8), we could specify gt

directly as the five-state Markov process with the transition matrix given by P̃ . The benefit of

starting from the autoregressive process is to make the calibration more parsimonious. All the

five grid points and the five-by-five transition probabilities are uniquely pinned down by only two

parameters in the autoregressive process, the persistence, ρg, and the conditional volatility, σg.

To incorporate disasters into the model, we modify directly the discretized gt grid and its tran-

sition matrix, following Danthine and Donaldson (1999). In particular, we insert into the gt grid a

disaster state, g0 = λD, in which λD < 0 is the disaster size, as well as a recovery state, g6 = λR,

in which λR > 0 is the recovery size. Accordingly, we form the transition matrix, P , by modifying

4Kopecky and Suen (2010) show that the Rouwenhorst (1995) method dominates other popular methods
in the Markov-chain approximation to autoregressive processes in the context of the stochastic growth model.
Petrosky-Nadeau and Zhang (2017) document similar results in the search model of equilibrium unemployment.

5To construct the P̃ matrix, we set p = (ρg + 1)/2, and define the transition matrix for ng = 3 as:

P̃ (3)
≡




p2 2p(1− p) (1− p)2

p(1− p) p2 + (1− p)2 p(1− p)
(1− p)2 2p(1− p) p2


 . (11)

To obtain P̃ = P̃ (5), we use the following recursion:

p

[
P̃ (ng) 0

0
′ 0

]
+ (1− p)

[
0 P̃ (ng)

0 0
′

]
+ (1− p)

[
0
′ 0

P̃ (ng) 0

]
+ p

[
0 0

′

0 P̃ (ng)

]
, (12)

in which 0 is a ng × 1 column vector of zeros. We then divide all but the top and bottom rows by two to ensure
that the conditional probabilities sum up to one in P̃ (ng+1) (see Rouwenhorst, 1995, p. 306–307 and p. 325–329).
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P̃ to incorporate the disaster and recovery states as follows:

P =




θ 0 0 . . . 0 1− θ

η p11 − η p12 . . . p15 0

η p21 p22 − η . . . p25 0
...

...
...

. . .
...

...

η p51 p52 . . . p55 − η 0

0 (1− ν)/5 (1− ν)/5 . . . (1− ν)/5 ν




. (13)

In the modified transition matrix, P , η is the probability of entering the disaster state from any

of the normal states, and θ is the probability of remaining in the disaster state next period condi-

tional on the economy in the disaster state in the current period. As such, θ is the persistence of

the disaster state. Similarly, ν is the persistence of the recovery state. In addition, in constructing

the transition matrix, we have implicitly assumed that the economy can only enter the recovery

state following a disaster. Once in the recovery state, the economy can enter any of the normal

states with an equal probability, (1−ν)/5, but cannot fall immediately back into the disaster state.

The modeling of disasters as large drops in total factor productivity, and consequently, in out-

put and consumption is motivated by Barro (2006, 2009), Barro and Ursua (2008), and Nakamura,

Steinsson, Barro and Ursua (2013). These studies document evidence on consumption and output

disasters in a historical, cross-country panel. In addition, Cole and Ohanian (1999, 2007) show

that negative shocks to total factor productivity can account for over half of the 1929–1933 down-

turn in the Great Depression in the United States. Finally, Kehoe and Prescott (2007) show that

productivity shocks play an important role during economic disasters around the world.

3.4 Adjustment Costs

Let Iit denote firm i’s investment at time t. Capital accumulates as follows:

Kit+1 = Iit + (1− δ)Kit, (14)
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in which δ is the capital depreciation rate. Real investment entails asymmetric adjustment costs:

Φit ≡ Φ(Iit,Kit) =





a+Kit +
c+

2

(
Iit
Kit

)2
Kit for Iit > 0

0 for Iit = 0

a−Kit +
c−

2

(
Iit
Kit

)2
Kit for Iit < 0

, (15)

in which a− > a+ > 0 and c− > c+ > 0 capture the asymmetry (Abel and Eberly 1994).

3.5 Firms’ Problem

Let µt denote the bivariate cross-sectional distribution of capital, Kit, and firm-specific productiv-

ity, Zit. With a continuum of firms, µt is a pair of interrelated continuous functions. In practice, we

use a very large number, N , of firms as the proxy for the infinite-dimensional continuum. As such,

µt is an N -by-two matrix, with two cross-sectionally correlated columns. Because of the aggregate

shocks, µt is time-varying. We denote its equilibrium law of motion, Υ, as given by:

µt+1 = Υ(µt,Xt,Xt+1). (16)

Because µt is relevant for firms to forecast future consumption, Ct+1, and consequently, the pricing

kernel, Mt+1, µt is an endogenous, aggregate state variable in the general equilibrium model.

Upon observing the exogenous aggregate state, Xt, the endogenous aggregate state, µt, the

exogenous firm-specific state, Zit, and the endogenous firm-specific state, Kit, firm i makes optimal

investment decision, Iit, and optimal exit decision, χit, to maximize its market value of equity. Let

Dit ≡ Πit − Iit − Φ(Iit,Kit) be dividends. The cum-dividend market equity, Vit, is given by:

Vit ≡ V (Kit, Zit;Xt, µt) = max
{χit}

(
max
{Iit}

Dit + Et

[
Mt+1V (Kit+1, Zit+1;Xt+1, µt+1)

]
, sKit

)
, (17)

in which s > 0 is the liquidation value parameter, subject to the capital accumulation equation

(14) and the equilibrium law of motion for µt in equation (16).

When Vit ≥ sKit, which is the exit threshold, firm i stays in the economy, i.e., χit = 0. For all

the incumbent firms, evaluating the value function at the optimum yields Vit = Dit+Et[Mt+1Vit+1].
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Equivalently, Et[Mt+1Rit+1] = 1, in which Rit+1 ≡ Vit+1/(Vit −Dit) is the stock return. Using the

definition of covariance, we can rewrite Et[Mt+1Rit+1] = 1 as:

Et[Rit+1] = rft +

(
−
Covt[Rit+1,Mt+1]

Vart[Mt+1]

)
Vart[Mt+1]

Et[Mt+1]
= rft + βMit φMt (18)

in which rft ≡ 1/Et[Mt+1] is the real interest rate, βM
i ≡ −Covt[Rit+1,Mt+1]/Vart[Mt+1] the true

beta, and φMt ≡ Vart[Mt+1]/Et[Mt+1] the price of consumption risk.

When Vit < sKit, firm i exits from the economy at the beginning of time t, i.e., χit = 1. We set

its stock return over period t− 1, Rit, to be a predetermined, constant delisting return, denoted R̃.

We assume that the firm enters an immediate reorganization process. The current shareholders of

the firm receive sKit as the liquidation value, and the old firm ceases to exit. New shareholders take

over the remainder of the firm’s capital, (1− s− κ)Kit, in which κ ∈ [0, 1− s] is the reorganization

cost parameter. For computational tractability, we assume that the reorganization process occurs

instantaneously. At the beginning of t, the old firm is replaced by a new firm with an initial capital

of (1 − s− κ)Kit and a new firm-specific log productivity, zit, that equals its unconditional mean,

z. This modeling of entry and exit keeps the number of firms constant in the economy.

Prior theoretical models, all of which have no disasters, have largely ignored the exit decision.

With disasters, firms are more likely to exit in the disaster state, especially when the liquidation

value parameter, s, is high. As such, we incorporate the exit decision, and the related entry decision,

into the model to better quantify the impact of disaster dynamics on the cross section.

3.6 Competitive Equilibrium

A recursive competitive equilibrium consists of an optimal investment rule, I(Kit, Zit;Xt, µt); an

optimal exit rule, χ(Kit, Zit;Xt, µt); a value function, V (Kit, Zit;Xt, µt); and an equilibrium law of

motion for the firm distribution, Υ(µt,Xt,Xt+1), such that the following conditions hold.

• Optimality: I(Kit, Zit;Xt, µt), χ(Kit, Zit;Xt, µt), and V (Kit, Zit;Xt, µt) solve the value

maximization problem in equation (17) for each firm.

21



• Consistency: The aggregate behavior of the economy is consistent with the optimal behavior

of all firms in the economy. Let Yt, It, Kt, Φt denote the aggregate output, investment,

capital, and adjustment costs, respectively, then:

Yt =

∫
Yit µt(dKit, dZit); (19)

It =

∫
Iit µt(dKit, dZit); (20)

Kt =

∫
Kit µt(dKit, dZit); (21)

Φt =

∫
Φit µt(dKit, dZit). (22)

Also, the law of motion for the firm distribution, Υ, is consistent with the optimal decisions of

firms. Let Θ be any measurable set in the product space ofKit+1 and Zit+1, then Υ is given by:

µt+1(Θ,Xt+1) = T (Θ, (Kit, Zit),Xt)µt(Kit, Zit,Xt), (23)

in which

T (Θ, (Kit, Zit),Xt) ≡

∫∫
1{(Iit+(1−δ)Kit,Zit+1)∈Θ}QZ(dZit+1|Zit)QX(dXt+1|Xt), (24)

1{·} is an indicator function that takes the value of one if the event described in {·} is true,

and zero otherwise, and QZ and QX are the transition functions for Zit and Xt, respectively.

• Market clearing: Aggregate consumption equals aggregate output minus aggregate invest-

ment:

Ct = Yt − It ⇒ Ct = Dt + fKt +Φt. (25)

We treat the fixed costs of production, fKt, and capital adjustment costs, Φt, as compensa-

tion to labor, and include their sum as part of consumption. Doing so drives a wedge between

consumption and aggregate dividends to help explain risk premiums (Abel 1999).
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3.7 Solving for the Competitive Equiibrium

Because the model features a balanced growth path, we first reformulate it in terms of stationary

variables before solving for its competitive equilibrium. We define the following stationary variables:

Ût ≡ Ut/Ct, Π̂it ≡ Πit/Xt−1, V̂it ≡ Vit/Xt−1, K̂it ≡ Kit/Xt−1, Îit ≡ Iit/Xt−1, Φ̂it ≡ Φit/Xt−1,

Ĉt ≡ Ct/Xt−1, and D̂it ≡ Dit/Xt−1, and then rewrite the key equations as follows:

• The log utility-to-consumption ratio, ût ≡ log(Ût):

exp(ût) =

[
(1− ̺) + ̺ (Et [exp [(1− γ)(ût+1 + ĝct+1 + gxt)]])

1−1/ψ
1−γ

] 1
1−1/ψ

, (26)

in which ĝct+1 ≡ log(Ĉt+1/Ĉt) is the log growth rate of detrended consumption.

• The pricing kernel:

Mt+1 = ̺ exp

[
−
1

ψ
(ĝct+1 + gxt)

] [
exp [(1− γ)(ût+1 + ĝct+1)]

Et [exp [(1− γ)(ût+1 + ĝct+1)]]

] 1/ψ−γ
1−γ

. (27)

• Profits: Π̂it ≡ exp[(1− ξ)gxt]Z
1−ξ
it K̂ξ

it − fK̂it.

• Capital accumulation: K̂it+1 exp(gxt) = (1− δ)K̂it + Îit.

• The adjustment costs function:

Φ̂it =





a+K̂it +
c+

2

(
Îit
K̂it

)2
K̂it for Îit > 0

0 for Îit = 0

a−K̂it +
c−

2

(
Îit
K̂it

)2
K̂it for Îit < 0

. (28)

• The cross-sectional distribution of K̂it and Zit, µ̂t, and its equilibrium law of motion, Υ̂t.

• The value function, V̂it ≡ V̂
(
K̂it, Zit, gt, µ̂t

)
:

V̂it = max
{χit}

[
max
{Îit}

D̂it + Et

[
Mt+1V̂

(
K̂it+1, Zit+1, gt+1, µ̂t+1

)]
exp(gxt), sK̂it

]
. (29)

• The stock return for an incumbent firm: Rit+1 ≡ V̂it+1 exp(gxt)/(V̂it − D̂it).
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A major challenge in solving and analyzing our general equilibrium model is that the cross-

sectional distribution, µt, is an endogenous, aggregate state variable that affects the pricing kernel,

Mt+1. We adopt the idea of approximate aggregation from Krusell and Smith (1997, 1998) to make

the firms’ problem computationally tractable. We guess and verify that the cross-sectional average

detrended capital, denoted Kt, contains all the information of µt that is relevant for forecasting

the pricing kernel, Mt+1. Appendix A details our computational algorithm.

4 Quantitative Results

We calibrate the model, and report its basic moments in Section 4.1. We present key equilibrium

properties in Section 4.2. We explain the failure of the CAPM in Section 4.3, the beta “anomaly” in

Section 4.4, and the failure of the consumption CAPM in Section 4.5. Finally, we report extensive

comparative statics in Section 4.6.

4.1 Calibration and Basic Moments

Table 6 reports the parameter values in our monthly calibration. For preferences, we set the

intertemporal elasticity of substitution, ψ, to 1.5, the relative risk aversion, γ, five, and the time

discount factor, ̺, 0.9945. For the parameters that govern the dynamics in normal times, we set the

balance growth rate, g, to 1.9%/12, which matches an annualized growth rate of 1.9% for real per

capita consumption (nondurables and services) growth from the second quarter of 1947 to the second

quarter of 2017 in National Income and Product Accounts (NIPA) Table 7.1. The persistence of the

demeaned aggregate productivity growth, ρg, is 0.6, and its conditional volatility, σg, 0.003, which,

as shown below, yield a reasonable match with consumption growth dynamics in the postwar data.

For the parameters that govern the disaster dynamics, we set the disaster persistence, θ =

0.9141/3, which is the probability that the economy remains in the disaster state in the next month

conditional on it being in the disaster state in the current month. This monthly persistence accords

with a quarterly persistence of 0.914 as in Gourio (2012), and the average duration of disasters is
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Table 6 : Parameter Values in the Benchmark Monthly Calibration

̺ denotes the time discount factor, γ the relative risk aversion, ψ the intertemporal elasticity
of substitution, ḡ the long-run mean of log aggregate productivity growth, ρg the persistence of
productivity growth, σg the conditional volatility of productivity growth, η the disaster probability,
λD the disaster size, θ the disaster persistence, λR the recovery size, ν the recovery persistence, ξ the
curvature of the production function, δ the capital depreciation rate, f the fixed costs of production
parameter, z the long-run mean of log firm-specific productivity level, ρz the persistence of log
firm-specific productivity, σz the conditional volatility of log firm-specific productivity, a+ upward
nonconvex adjustment costs parameter, a− downward nonconvex adjustment costs parameter, c+

upward convex adjustment costs parameter, c− downward convex adjustment costs parameter, s
the liquidation value parameter, κ the reorganization costs parameter, and R̃ the delisting return.

̺ γ ψ ḡ ρg σg η λD θ λR ν ξ

0.9945 5 1.5 1.9%/12 0.6 0.003 2%/12 −2.75% 0.9141/3 1.5% 0.964 0.65

δ f z ρz σz a+ a− c+ c− s κ R̃
0.01 0.005 −8.52 0.985 0.5 0.035 0.05 75 150 0 0.25 −12.33%

1/(1−0.9141/3) = 33 months (roughly three years), consistent with Barro and Ursua (2008). We set

the disaster probability, η, to be 2%/12, which implies an annual disaster probability of 2%. This

disaster probability is conservative relative to the 2.8% annual probability estimated in Nakamura,

Steinsson, Barro and Ursua (2013) and the 0.72% quarterly probability calibrated in Gourio.

Following Gourio (2012), we calibrate the remaining disaster parameters, including the disaster

size, λD, the recovery size, λR, and the recovery persistence, ν, in the demeaned aggregate pro-

ductivity growth, gt, to ensure that the impulse response of consumption to a disaster shock in

the model’s simulations replicates the basic pattern in the data reported in Nakamura, Steinsson,

Barro, and Ursua (2013). This procedure yields λD = −2.75%, λR = 1.5%, and ν = 0.964.

Panel A of Figure 3 shows that the model’s impulse response is conservative relative to that

in the data. The average maximum short-term effect of disasters across more than 28,000 disaster

episodes simulated from the model is a drop of 13.9% for consumption, and the median maximum

short-term effect is a drop of 18.9% of consumption. The average long-term negative effect is about

9% fall, and the median 11% fall in consumption. For comparison, Nakamura, Steinsson, Barro

and Ursua (2013) report that the mean maximum short-term effect of disasters is 29% drop in con-

sumption across countries, and the long-term effect is 14% fall. The median maximum short-term

effect is 24% drop in consumption, and the median long-term impact is 10% fall.
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Figure 3 : The Impulse Response of Consumption to a Disaster Shock in the Model

In simulated data, when the economy enters the disaster state, we calculate the cumulative
fractional drop in consumption for 25 years after the impulse. The impulse responses are based on
more than 28,000 disaster episodes. Consumption is time-aggregated from the monthly to annual
frequency. The blue solid line is the mean impulse response, the black dotted line is the median,
and the two red broken lines in Panel B are the 16 and 84 percentiles in the simulations.
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Panel B shows that the 16 and 84 percentiles of the consumption impulse response to a disaster

shock are wide in the model’s simulations. The two bounds provide the 68% confidence interval for

the impulse response in the model. The large amount of uncertainty at the beginning of a disaster

on its impact is also clearly visible in the data, as shown in Nakamura, Steinsson, Barro and Ursua

(2013, Figure 3). The large uncertainty is perhaps not surprising. Disasters are rare events. As

such, estimating their statistical properties comes with large standard errors.

The remaining parameters govern the various technologies in the economy. We set the curvature

parameter in the production function, ξ = 0.65, per Hennessy and Whited (2007). The monthly

depreciation rate, δ, is 0.01, which implies an annual rate of 12%, as estimated by Cooper and

Haltiwanger (2006). The persistence, ρz, and conditional volatility, σz, of the firm-specific produc-

tivity are set to be 0.985 and 0.5, respectively, which are somewhat larger than the values in Zhang
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(2005) after adjusting for the curvature parameter ξ. We do so to ensure a sufficient amount of the

cross-sectional dispersion of firms. The long-run mean of log firm-specific productivity, z̄, is −8.52

to scale the long-run average detrended capital around unity in simulations.

We set the liquidation value parameter, s = 0, implying that shareholders receive nothing

in bankruptcy. We set the reorganizational cost parameter, κ, to 0.25, and the adjustment cost

parameters a+ = 0.035, a− = 0.05, c+ = 75, c− = 150, and the fixed costs parameter, f = 0.005.

Because of the lack of evidence on their values, we calibrate these parameters to the properties of the

book-to-market deciles, and conduct extensive comparative statics to quantify their impact (Section

4.6). Finally, Hou, Xue, and Zhang (2017) report that the average delisting return is −12.33% in

the CRSP database. Accordingly, we set the delisting return in the model, R̃, to the same value.

Table 7 reports the basic moments of aggregate output, consumption, and investment growth

rates both in the data and in the model. Output in the data is per capita gross domestic product

in chained dollars from NIPA Table 7.1. Consumption is per capita consumption expenditures on

nondurables plus services in chained dollars from NIPA Table 7.1. Investment is real nonresidential

gross private, fixed domestic investment from NIPA Table 1.1.3, scaled by population series from

NIPA Table 7.1. The data sample with disasters is annual from 1930 to 2016, and the data sample

without disasters is quarterly from the second quarter of 1947 to that of 2017.

To calculate the model moments, we simulate 2,000 artificial samples, each with 30,000 firms

and 2,000 months. Because we need to compute consumption moments, we simulate a large number

of firms, 30,000, which is necessary to ensure convergence in the laws of motion in the Krusell-Smith

algorithm (Appendix A). We start each simulation by setting the initial capital stocks of all firms to

unity and the initial log firm-specific productivity levels to its long-run mean, z. We drop the first

944 months to neutralize the impact of the initial condition. The remaining 1,056 months of simu-

lated data are treated as from the model’s stationary distribution. The sample size is comparable

with the annual sample from 1929 to 2016 for output, consumption, and investment in the data.
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Table 7 : Basic Moments of Log Output, Consumption, and Investment Growth

The data moments in samples with disasters are based on the annual sample from 1930 to 2016,
and those in samples without disasters on the quarterly sample from the second quarter of 1947 to
the second quarter of 2017. “Vol” denotes volatility, “Skew” skewness, and “Kurt” kurtosis. The
volatilities in samples with disasters are in annual percent, and the volatilities in samples without
disasters in quarterly percent. ARi is the ith-order autocorrelation. Output in the data is per
capita gross domestic product in chained dollars from NIPA Table 7.1, consumption per capita
consumption expenditures on nondurables plus services in chained dollars from NIPA Table 7.1,
and investment real nonresidential gross private, fixed domestic investment from NIPA Table 1.1.3,
scaled by population series from NIPA Table 7.1. The model moments in the columns denoted
“mean” are averaged across 2,000 samples, each with 30,000 firms and 2,000 months. Columns
denoted “2.5,” “50,” and “97.5” report 2.5, 50, and 97.5 percentiles across the simulations. The
p-value (p) is the percentage with which a model moment is larger than its data counterpart.

Samples with disasters, annual Samples without disasters, quarterly

Data mean 2.5 50 97.5 p Data mean 2.5 50 97.5 p

Panel A: Output growth

Vol 4.79 4.41 1.37 4.26 8.50 0.41 0.94 0.50 0.44 0.49 0.65 0.00
Skew −0.29 −1.89 −4.32 −2.09 2.07 0.15 −0.18 0.02 −0.32 −0.02 1.02 0.88
Kurt 6.14 11.43 2.95 9.54 27.52 0.78 4.51 3.05 2.41 2.90 5.11 0.04
AR1 0.54 0.69 0.27 0.73 0.93 0.80 AR1 0.37 0.43 0.30 0.42 0.63 0.82
AR2 0.19 0.38 −0.15 0.40 0.82 0.74 AR4 −0.07 0.11 −0.06 0.09 0.35 0.99
AR3 −0.14 0.23 −0.22 0.21 0.72 0.92 AR8 −0.02 0.07 −0.09 0.06 0.26 0.82
AR4 −0.34 0.14 −0.26 0.12 0.62 0.99 AR12 −0.12 0.05 −0.10 0.04 0.24 0.99
AR5 −0.19 0.09 −0.25 0.07 0.53 0.94 AR20 0.05 0.02 −0.13 0.02 0.19 0.35

Panel B: Consumption growth

Vol 2.13 4.28 1.30 4.13 8.28 0.87 0.50 0.46 0.40 0.45 0.60 0.09
Skew −1.48 −1.93 −4.42 −2.14 2.13 0.32 −0.41 0.02 −0.31 −0.03 1.14 0.99
Kurt 8.09 11.66 2.98 9.63 28.82 0.63 4.17 3.10 2.44 2.93 5.83 0.04
AR1 0.48 0.69 0.24 0.74 0.93 0.85 AR1 0.31 0.44 0.31 0.44 0.66 0.97
AR2 0.18 0.39 −0.15 0.42 0.83 0.75 AR4 0.10 0.13 −0.05 0.12 0.39 0.61
AR3 −0.05 0.24 −0.22 0.23 0.72 0.86 AR8 −0.02 0.08 −0.08 0.08 0.30 0.86
AR4 −0.19 0.16 −0.24 0.13 0.63 0.95 AR12 0.08 0.06 −0.10 0.05 0.28 0.35
AR5 0.00 0.10 −0.24 0.08 0.55 0.70 AR20 −0.04 0.03 −0.13 0.03 0.21 0.83

Panel C: Investment growth

Vol 13.53 19.56 3.10 12.28 71.84 0.45 2.40 1.09 0.98 1.08 1.33 0.00
Skew −1.33 −0.17 0.02 −1.56 2.69 0.68 −0.53 −0.20 −0.58 −0.20 0.25 0.96
Kurt 7.07 27.45 6.68 19.50 100.98 0.96 4.73 3.70 2.85 3.41 5.26 0.03
AR1 0.41 0.18 0.00 0.23 0.59 0.17 AR1 0.46 0.24 0.11 0.24 0.38 0.01
AR2 −0.15 −0.06 0.00 0.00 −0.44 0.71 AR4 −0.03 −0.00 −0.12 −0.01 0.14 0.63
AR3 −0.33 −0.07 0.00 0.00 0.38 0.96 AR8 −0.18 −0.01 −0.12 −0.01 0.11 1.00
AR4 −0.17 −0.06 −0.00 0.00 −0.07 0.84 AR12 −0.09 −0.01 −0.13 −0.01 0.11 0.90
AR5 −0.05 −0.05 −0.00 −0.05 −0.06 0.57 AR20 0.03 −0.00 −0.12 0.00 0.11 0.29
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When at least one disaster is realized in an artificial sample, we time-aggregate the 1,056 months

into 88 annual observations. Time-aggregation means that we add up 12 months within a given

year, and treat the sum as the year’s observation. On artificial samples with no disasters, we time-

aggregate the initial 846 months into 282 quarters to be comparable with the quarterly sample

from the first quarter of 1947 to the second quarter of 2017 in the data. Out of the 2,000 artificial

samples, 1,688 have at least one disaster, and the remaining 312 have none. As such, the frequency

of having 1,056 months (88 years) with at least one disaster episode is 1, 688/2, 000 = 84.4%.6

From Panel A of Table 7, the output volatility in the model is close to that in the data, 4.41%

versus 4.79% per annum, with disasters, but lower, 0.5% versus 0.94% per quarter, without disasters.

The first-order autocorrelation of output growth is somewhat higher in the model than that in the

data, 0.69 versus 0.54, with disasters, and 0.43 versus 0.37, without disasters. The autocorrelations

turn negative at the 4- and 5-year horizons in the data, but remain positive in the model.

Panel B shows that the consumption volatility in the model is close to that in the data, 0.46%

versus 0.5% per quarter, without disasters, but higher, 4.28% versus 2.13% per annum, with disas-

ters. The consumption growth is negatively skewed and fat-tailed both in the data and in the model,

with disasters. Without disasters, the autocorrelation structure of the consumption growth in the

model resembles that in the data. Except for the first-quarter autocorrelation, which is somewhat

higher in the model than in the data, 0.44 versus 0.31, none of the p-values at longer lags indicate

incompatibility between the data and model autocorrelations. With disasters, the autocorrelations

are somewhat higher in the model than in the data, but none of the p-values indicate incompatibility.

Finally, Panel C shows that the investment volatility in the model is higher than that in the data,

19.6% versus 13.5% per annum, with disasters, but lower, 1.1% versus 2.4% per quarter, without

disasters. The aggregate investment growth is more autocorrelated in the data than in the model.

6The relatively high frequency of the disaster samples out of 2,000 artificial samples is consistent with the low
disaster probability of only 2% per year. The crux is that we count a (long) sample as a disaster sample if it contains
at least one disaster episode. Roughly, if a disaster occurs with a probability of p in any given period, the chance of
observing no disasters in a given sample is (1−p)T , in which T is the sample length. The probability with at least one
disaster in the sample is 1− (1− p)T . With our monthly calibration, this probably is 1− (1− 0.02/12)1,056 = 82.8%.
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The first-lag autocorrelation is 0.41 in the long annual sample, but only 0.18 in the model’s disaster

samples. The first-lag autocorrelation is 0.46 in the short quarterly sample in the data, but 0.24 in

the model’s samples without disasters. Investment growth is negatively autocorrelated at longer lags

in annual samples with disasters, but largely uncorrelated in quarterly samples without disasters.

For aggregate asset pricing moments, it is customary in the disaster literature to match inter-

national data (Barro 2006). In particular, Petrosky-Nadeau, Zhang, and Kuehn (2018) compile

a historical cross-country panel of real stock market returns and real interest rates by drawing

from Global Financial Data and an updated Dimson-Marsh-Staunton (2002) dataset obtained from

Morningstar. Petrosky-Nadeau et al. report that the equity premium is on average 6.6% per annum

across countries, ranging from 3.66% in the United Kingdom to 9.66% in Japan. The real interest

rate is on average 1%, ranging from −2.44% in Austria to 3.5% in Denmark. The stock market

volatility is on average 25.6%, and the real interest rate volatility 12.32%. The high volatilities in

historical data are mostly due to sovereign default, which is abstracted from our model.

In simulations, our model implies an average equity premium of 9.6%, with a 95% confidence

interval of [8.5%, 10.2%], and an average interest rate of 2.6%, with a confidence interval of

[0.15%, 4.15%]. The interest rate volatility is 0.8%, as the intertemporal elasticity of substitution, ψ,

is 1.5. More important, the stock market volatility is only 7.7% in the model. This lower volatility

than that in the data is in line with Barro (2006, 2009). Introducing the time-varying disaster

probability per Gourio (2012) and Wachter (2013) can fix this weakness. Alas, doing so would add

one more state, and increase the computational burden exponentially. More important, introducing

an extra aggregate state will most likely strengthen the model’s ability to explain the failure of the

CAPM, which is our main focus. We opt to achieve this goal with a more parsimonious model.

4.2 Key Properties of the Competitive Equilibrium

Before we present detailed quantitative results on the cross section, we characterize key equilibrium

properties by presenting key variables on the numerical grid and across the book-to-market deciles.
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Figure 4 : Optimal Policy Functions in the Model

Based on the model’s competitive equilibrium, Panel A plots the investment-to-capital ratio,
Îit/K̂it, on the K̂it-zit-gt-Kt grid, when the demeaned aggregate productivity growth, gt, is set
to be the disaster size, λD. K̂it is the detrended firm-level capital, zit log firm-specific productivity,
and Kt the cross-sectional average detrended capital (which is set to be the median of its grid).
Panel B plots the investment-to-capital ratio when gt is set to be zero (the mean normal state)
minus the investment-to-capital ratio in the disaster state.

Panel A: Îit/K̂it in the disaster state Panel B: The difference in Îit/K̂it between
the mean normal state and disaster state
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4.2.1 Optimal Policy Functions

Figure 4 uses the model’s solution on the K̂it-zit-gt-Kt grid to plot the optimal investment-to-capital

ratio, Îit/K̂it, against the detrended capital, K̂it, and the log firm-specific productivity, zit. Panel

A makes the plot in the disaster state, with the demeaned aggregate productivity growth, gt, set

to the disaster size, λD. To examine the impact of disasters, Panel B plots the difference between

Îit/K̂it, when gt = 0 (the mean of normal states), and Îit/K̂it when gt = λD. In both panels, the

cross-sectional average detrended capital, Kt, is set to be the median on its grid.

Panel A shows that the optimal investment-to-capital ratio, Îit/K̂it, rises with firms-specific pro-

ductivity. Intuitively, more productive firms have higher shadow value of capital, and consequently

invest more. In addition, Îit/K̂it decreases with capital. This pattern is a result of decreasing

31



returns to scale in the production function in equation (5).

In Panel A, only a portion of the K̂it-zit grid is plotted. This missing region is exactly where

firms exit the economy. Naturally, firms with low firm-specific productivity are more likely to exit

than firms with high firm-specific productivity. In addition, because the fixed costs of production

are proportional to capital, firms with more capital have to pay higher costs than firms with less

capital to stay in production. As such, high-K̂ firms are more likely to exit than low-K̂ firms.

Panel B shows that the disaster risk affects the investment policy the most for firms that are

close to the exit boundary. For these firms, the differences in the optimal investment-to-capital

ratio between the mean normal state and the disaster state are most visible.

4.2.2 Risk and Risk Premiums

Figure 5 plots the true beta, βMit , and the expected risk premium, Et[Rit+1] − rft, against the

detrended capital, K̂it, and the log firm-specific productivity, zit, for two values of the detrended

aggregate productivity growth, gt, the disaster state, λD, and the mean normal state (zero). The

cross-sectional average detrended capital, Kt, is again set to be the median of its grid.

Panel A shows that in the disaster state, firms that are close to the exit boundary, such as

low-z firms, are substantially riskier than firms that are far away from the exit boundary, such as

high-z firms. Accordingly, Panel C shows that low-z firms earn substantially higher risk premiums

than high-z firms in the disaster state. In sharp contrast, Panels B and D show that risk and risk

premiums are largely flat across firms in the mean normal state.

Intuitively, the economic mechanism is similar qualitatively to, but turbocharged quantitatively

relative to, the asymmetry mechanism in Zhang (2005). Because of asymmetric adjustment costs,

low-z firms are burdened with more unproductive capital, finding it more difficult to downsize than

high-z firms. As such, low-z firms are riskier than high-z firms in disasters. In contrast, in normal

times, even low-z firms do not have strong incentives to disinvest. As such, the asymmetry mecha-

nism fails to take strong effect, giving rise to weak spreads in risk and risk premiums across firms.

32



Figure 5 : Disaster Risk and Risk Premiums in the Model

This figure plots the true beta, βMit , and the expected risk premium, Et[Rit+1]− rft, on the K̂it-zit-

gt-Kt grid. K̂it is the detrended firm-level capital, zit log firm-specific productivity, gt the demeaned
aggregate productivity growth, and Kt the cross-sectional average detrended capital. We set gt to
be the disaster size, λD, in Panels A and C, and set gt to be zero, which is the mean of the normal
states, in Panels B and D. Kt is set to be the median of its grid in all panels.

Panel A: True beta, βMit , the disaster state Panel B: True beta, βMit , the mean normal
state
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While Zhang describes the working of this mechanism in recessions, we turbocharge it in disasters.

This asymmetry mechanism is related to our modeling of disasters as large drops in the aggre-

gate productivity growth. Besides productivity disasters, Gourio (2012) also models disasters via

capital destruction, which would seem to weaken the asymmetry mechanism in Figure 5. However,

while capital destruction is realistic for wars, it is less obvious for economic disasters. Because

we aim to explain the stylized facts (Section 2) that feature the Great Depression, which is an

economic disaster, we opt not to model capital destruction. More important, Gourio motivates

capital destruction in disasters as large, negative shocks on the “quality” of capital: “Perhaps it is

not the physical capital but the intangible capital (customer and employee value) that is destroyed

during prolonged economic depressions (p. 2740).” The accumulation of a large quantity of capital

with deteriorating quality in disasters likely strengthens the asymmetry mechanism.

4.2.3 Value versus Growth

To shed light on the key properties of the book-to-market deciles, we simulate 2,000 artificial sam-

ples, each with 5,000 firms and 2, 000 months. We start each simulation by setting the initial capital

stocks of all firms at unity and the initial log firm-specific productivity to its long-run mean, z. We

drop the first 908 months to neutralize the impact of the initial condition, and treat the remaining

1, 092 months as from the economy’s stationary distribution. The sample size is comparable to the

period from July 1926 to June 2017 in the data. We calculate the model moments on each artificial

sample, and report cross-simulation averaged results. To demonstrate the impact of disasters, we

calculate cross-simulation averages separately on samples with and without disasters.

Figure 6 reports the results. From Panel A, value firms with high book-to-market have about

4.5 times more capital than growth firms with low book-to-market. All firms have slightly more

capital in the disaster samples than in the no-disaster samples, but the basic pattern across value

and growth holds with and without disasters.

Moving to the log firm-specific productivity, zit, which is the other firm-specific state variable
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Figure 6 : Properties of the Book-to-market Deciles in the Model

Results are based on 2,000 simulated economies, each with 5,000 firms and 2,000 months. We
drop the first 908 months, and treat the remaining 1, 092 months as from the model’s stationary
distribution. On each artificial sample, we form the book-to-market deciles. The growth decile is
denoted “1,” and the value decile “10.” In each panel, the blue solid line with circles is averaged
across samples with disasters, and the red broken line with pluses across samples without disasters.
The investment-to-capital ratio, Îit/K̂it, is in monthly percent.
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besides the detrended capital, K̂it, Panel B shows that value firms have much lower firm-specific

productivity than growth firms. The conditional volatility of zit is 0.5. As such, the average zit of

the value decile is almost 2.5 conditional volatilities below its unconditional mean of z. Depending

on whether disasters are realized in a given sample or not, the average zit of the growth decile can

be above z by up to one half of the conditional volatility. In total, the difference in the average zit

between the extreme deciles is about three conditional volatilities of zit in the disaster samples.

Panel B also shows that the relation between zit and book-to-market is not monotonic: zit rises

from the growth decile to decile four, and then drops at an increasing rate from decile four to the

value decile. The key is that, as noted, the detrended capital, K̂it, is another firm-specific state

variable. The growth decile contains firms that have the lowest K̂it but relatively high zit levels. At

the other extreme, the value decile contains firms that have the highest K̂it but the lowest zit levels.

From Panel C, growth firms have higher investment-to-capital ratios, Îit/K̂it, than value firms.

With disasters, the average Îit/K̂it of the value decile is only 0.06% per month, whereas the av-

erage Îit/K̂it of the growth decile is 2.7%. The relation between Îit/K̂it and book-to-market is

strictly monotonic. Firms invest more in the no-disaster samples than the disaster samples, but

the difference is small, relative to the cross-sectional dispersion across the book-to-market deciles.

Most important, Panel D shows that risk dynamics differ drastically across the disaster and no-

disaster samples. Without disasters, the red broken line shows that the true beta, βMit , is largely flat

across the book-to-market deciles. In sharp contrast, with at least one disaster episode, the true beta

rises monotonically, with an increasing speed, with book-to-market. The true beta starts at 0.05

for the growth decile, increases to 0.06 for decile five, to 0.12 for decile nine, and then drastically to

0.21 for the value decile. As such, the relation between the true beta and book-to-market is convex.

4.3 Explaining the Failure of the CAPM

Based on 2,000 artificial samples, Table 8 reports the quantitative results on the CAPM regressions

under the benchmark calibration. Panel A shows the results in the disaster samples. The value
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premium is on average 0.46% per month, which is close to 0.48% in the data (Table 1). However,

its t-value in the model is 4.92, which is large relative to 2.63 in the data. Similarly, the t-values

for the deciles are often more than three times larger than those in the data, consistent with lower

return volatilities in the model than those in the data.

With disasters, Panel A shows that the market beta of the high-minus-low decile is high, 1.01

(t = 7.85). The increasing relation between the market beta and book-to-market is largely mono-

tonic, rising from 0.83 for the low decile to 1.84 for the high decile. The market beta spread is

large enough to make the CAPM alpha of the high-minus-low decile negative, −0.35% per month

(t = −2.44). Consistent with the data, the GRS test rejects the null that the alphas are jointly

zero across the ten deciles. However, the high-minus-low alpha estimate of 0.19% in the data lies

outside the model’s 95% confidence interval, and so is its t-value of 0.99 in the data.

More important, Panel B shows that the model is capable of explaining the failure of the CAPM

in accounting for the value premium in samples without disasters. Averaged across samples without

disasters, the high-minus-low decile earns on average 0.4% per month, which is not far from 0.47%

in the 1963–2017 sample. In addition, the CAPM fails in the no-disaster samples. The CAPM

regression of the high-minus-low decile yields an alpha of 0.25% (t = 2.26). The 95% confidence

interval for the alpha spans from 0.02% to 0.49%, and the interval for its t-value from 0.18 to 4.37.

As such, the alpha estimate of 0.43% (t = 1.89) in the data lies well within the model’s distribution.

Also, the market beta for the high-minus-low decile is small, 0.18 (t = 1.44), which is not far from

0.07 (t = 0.86) in the data (Table 1). The R2 is in effect zero. Finally, again consistent with data,

the GRS test rejects that the alphas are jointly zero across the ten deciles.

4.3.1 Nonlinearity in the CAPM Regressions

To shed light on the driving force behind our key results in Table 8, Figure 7 reports the scatter

plots of the CAPM regressions of the value-minus-growth decile in the model. Panel A is the scatter

plot from stacking the disaster samples underlying Panel A in Table 8, and Panel B the scatter
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Table 8 : The CAPM Regressions for the Book-to-market Deciles in the Model

Results are based on 2,000 simulated economies, each with 5,000 firms and 2,000 months. We
drop the first 908 months, and treat the remaining 1, 092 months as from the model’s stationary
distribution. The mean excess return, E[Re], and the CAPM alpha, α, are in monthly percent.
FGRS is the GRS F -statistic testing that the alphas are jointly zero across all ten deciles, and pGRS

its p-value. We report the cross-simulation averaged results, as well as the 2.5 and 97.5 percentiles
for the alpha, beta, their t-statistics adjusted for heteroscedasticity and autocorrelations, FGRS,
and pGRS. The R

2 is the goodness-of-fit coefficient for the time series CAPM regressions.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: Samples with disasters (FGRS = 12.67 ∈ [1.35, 40.28], pGRS = 0.01 ∈ [0.00, 0.20])

E[Re] 0.75 0.74 0.74 0.74 0.75 0.77 0.81 0.86 0.96 1.20 0.46
tRe 11.17 10.95 10.73 10.50 10.29 10.02 9.83 9.59 9.29 8.94 4.92
α 0.08 0.06 0.04 0.03 0.01 −0.02 −0.05 −0.09 −0.15 −0.27 −0.35
tα 1.75 1.55 1.22 0.74 0.18 −0.54 −1.10 −1.60 −2.05 −2.32 −2.44
α, 2.5 −0.03 −0.03 −0.04 −0.05 −0.08 −0.12 −0.19 −0.29 −0.42 −0.70 −0.86
α, 97.5 0.21 0.16 0.13 0.10 0.08 0.06 0.05 0.04 0.02 0.00 0.00
tα, 2.5 −0.84 −0.91 −1.03 −1.53 −2.11 −3.01 −3.63 −4.19 −4.16 −4.33 −4.53
tα, 97.5 4.43 3.99 3.56 2.92 2.29 1.90 1.39 1.07 0.57 0.05 0.05
β 0.83 0.85 0.87 0.89 0.93 0.99 1.07 1.19 1.40 1.84 1.01
tβ 35.57 42.36 51.84 69.25 74.28 65.01 53.50 38.76 25.28 18.49 7.85
β, 2.5 0.66 0.73 0.79 0.84 0.87 0.90 0.94 1.00 1.13 1.47 0.52
β, 97.5 0.98 0.96 0.94 0.96 1.04 1.18 1.33 1.57 1.85 2.32 1.61
tβ , 2.5 8.64 12.52 17.67 22.78 18.11 12.68 10.11 8.22 7.10 7.45 3.47
tβ , 97.5 132.89 133.16 145.36 174.58 184.14 169.89 166.37 139.47 77.09 42.45 17.28
R2 0.77 0.78 0.79 0.79 0.80 0.81 0.83 0.85 0.86 0.87 0.57

Panel B: Samples without disasters (FGRS = 4.76 ∈ [2.33, 8.15], pGRS = 0.00 ∈ [0.00, 0.01])

E[Re] 0.77 0.76 0.75 0.74 0.75 0.76 0.78 0.82 0.91 1.16 0.40
tRe 23.37 23.02 22.48 22.05 22.08 21.79 22.75 23.93 25.51 28.69 7.72
α 0.10 0.04 −0.02 −0.07 −0.10 −0.13 −0.07 0.02 0.13 0.35 0.25
tα 1.46 0.57 −0.22 −0.99 −1.37 −1.80 −0.93 0.32 1.83 4.25 2.26
α, 2.5 −0.04 −0.09 −0.16 −0.20 −0.24 −0.26 −0.20 −0.12 −0.00 0.17 0.02
α, 97.5 0.25 0.18 0.12 0.08 0.05 0.00 0.06 0.16 0.27 0.51 0.49
tα, 2.5 −0.55 −1.21 −2.21 −2.82 −3.24 −3.62 −2.78 −1.63 −0.01 1.77 0.18
tα, 97.5 3.61 2.68 1.68 1.16 0.88 0.02 0.88 2.46 3.87 6.61 4.37
β 0.83 0.90 0.96 1.02 1.06 1.10 1.06 1.00 0.97 1.01 0.18
tβ 11.04 11.91 12.60 13.23 13.69 14.06 13.58 12.94 11.89 10.64 1.44
β, 2.5 0.67 0.74 0.81 0.86 0.89 0.97 0.90 0.84 0.80 0.80 −0.09
β, 97.5 0.98 1.05 1.11 1.18 1.23 1.24 1.22 1.15 1.13 1.20 0.47
tβ , 2.5 8.56 9.05 10.40 10.63 11.07 11.51 10.92 10.29 9.55 7.66 −0.70
tβ , 97.5 14.75 16.68 15.84 16.53 16.60 17.57 17.53 17.10 15.10 13.49 3.59
R2 0.10 0.12 0.13 0.14 0.15 0.16 0.15 0.13 0.12 0.10 0.00
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Figure 7 : The CAPM Regressions of the Value Premium in the Model

The value premium is the value-minus-growth decile return. The market excess return is the
market portfolio return value-weighted from all the firms minus the interest rate. Based on 2,000
simulations from the model, this figure reports the scatter plot and the fitted line from regressing the
value premium on the market excess return. The fitted line in Panel A is estimated by stacking the
monthly observations from all the samples with disasters, and that in Panel B from all the samples
without disasters. Both the value premium and market excess return are in monthly percent.

Panel A: Samples with disasters Panel B: Samples without disasters

plot from stacking the no-disaster samples underlying Panel B in Table 8.

The basic patterns in Figure 7 resemble those in Figure 1 in the U.S. sample. From Panel

A of Figure 7, the value-minus-growth return covaries strongly with the market excess return in

the disaster samples. Both returns are large and negative in disasters, but large and positive in

the subsequent recoveries. As a result, the market beta for the value-minus-growth decile is 1.06,

which is a population moment because of the large number of simulations. However, the CAPM

alpha is −0.39% per month, implying that the unconditional CAPM does not hold in our dynamic

single-factor model. In contrast, Panel B shows that the value-minus-growth return does not co-

vary much with the market excess return in the no-disaster samples. Without the large swings

in the same direction in the value-minus-growth return and market excess return during disasters

and subsequent recoveries, the CAPM regression line is largely flat, resembling the 1963–2017 U.S.
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evidence (Figure 1). The market beta is only 0.18, and the CAPM alpha is 0.25% per month.7

4.3.2 Nonlinearity in the Pricing Kernel

The disaster risk induces strong nonlinearity in the pricing kernel, making the CAPM a poor proxy

of the pricing kernel. If the CAPM holds exactly, the pricing kernel can be expressed as a linear

function of the market excess return, RMt+1, i.e., Mt+1 = l0 + l1RMt+1, in which l0 and l1 are

constants (Cochrane 2005b). Figure 8 shows that the pricing kernel in the model is far from a

linear function of the market excess return. Panel A reports the scatter plot for regressing the

pricing kernel on the market excess return based on the disaster samples. The regression yields

an intercept of 1.22, a slope of −0.14, but an R2 of only 21%, despite the model’s single-factor

structure. The linear CAPM fits poorly the observations from the disaster state, with high real-

izations of the pricing kernel, and the observations from the recovery state, with low realizations

of the pricing kernel. From Panel B, the CAPM is an even worse proxy for the pricing kernel in

the no-disaster samples. The regression slope is only −0.03, although the R2 is 23% (because of

missing large outliers). As such, the CAPM fails badly in the no-disaster samples.

4.4 Explaining the Beta “Anomaly”

Our model also explains the flat beta-return relation. Applying the empirical procedure in Table

3 on artificial samples, we sort stocks at the end of each June based on pre-ranking market be-

tas from prior 60-month rolling windows, calculate monthly value-weighted decile returns for the

subsequent year, and rebalance the deciles in June. Panel A of Table 9 shows that in artificial

samples with disasters, the high-minus-low decile on the market beta earns on average only 0.06%

per month (t = 0.85). The pre-ranking market beta sorts also yield a spread in the post-ranking

betas, although its magnitude, 0.37 (t = 2.57), is smaller than that in the data. The CAPM alpha

7The scatter plot in Panel A of Figure 7 shows three large blocks, with the left, middle, and right blocks from
disasters, normal times, and recoveries, respectively. The discreteness arises because we simulate from the discrete
Markov chain with the transition probabilities in equation (13). If we use a sufficiently large number of grid points
for the normal states, and also simulate the economy for a sufficiently long period to ensure remote grid points are
visited, the discreteness would disappear. However, because the persistence in the aggregate demeaned productivity
growth, ρg, is relatively low, 0.6, a five-point grid is sufficient to ensure accuracy for simulated moments.
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Figure 8 : The Pricing Kernel versus the CAPM in the Model

The pricing kernel is given by Mt+1 = ̺ exp [− (ĝct+1 + g + gt) /ψ]
[

exp[(1−γ)(ût+1+ĝct+1)]
Et[exp[(1−γ)(ût+1+ĝct+1)]]

] 1/ψ−γ
1−γ

,

in which ĝct+1 is the detrended consumption growth, g is the balanced growth rate, gt the demeaned
aggregate productivity growth, and ût the log utility-to-consumption ratio in equation (27). The
market excess return in monthly percent is the value-weighted market return minus the interest rate.
Based on 2,000 simulations, this figure reports the scatter plot and the fitted line from regressing
the pricing kernel on the market excess return. The fitted line in Panel A is estimated by stacking
observations from all the disaster samples, and the fitted line in Panel B by stacking observations
from all the samples without disasters. In Panel A, the onset of disasters is in red plus, the onset
of recoveries in green square, and other times in blue circle.

Panel A: Samples with disasters Panel B: Samples without disasters

of the high-minus-low decile is −0.24%, albeit insignificant (t = −1.74). From Panel B, the results

from the no-disaster samples are quantitatively similar. The high-minus-low decile on the market

beta earns on average only −0.02% (t = −0.48). Sorting on the pre-ranking beta continues to yield

a significant spread in the post-ranking beta, 0.23 (t = 1.98). As a result, the CAPM alpha for the

high-minus-low beta decile is significantly negative, −0.21% (t = −1.96).

It is perhaps surprising that our risk-based model can reproduce the flat beta-return relation in

simulations. The crux is that the rolling market beta contains a great deal of measurement errors,

and is, consequently, a poor proxy for the true market beta. Because of our single-factor structure,

all aggregate variables are roughly one-to-one functions of the aggregate productivity growth, gt,
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Table 9 : The CAPM Regressions for the Pre-ranking Market Beta Deciles in the Model

Results are based on 2,000 simulated economies, each with 5,000 firms and 2,000 months. We
drop the first 908 months, and treat the remaining 1, 092 months as from the model’s stationary
distribution. The mean excess return, E[Re], and the CAPM alpha, α, are in monthly percent.
FGRS is the GRS F -statistic testing that the alphas are jointly zero across all ten deciles, and pGRS

its p-value. We report the cross-simulation averaged results, as well as the 2.5 and 97.5 percentiles
for the alpha, beta, their t-statistics adjusted for heteroscedasticity and autocorrelations, FGRS,
and pGRS. The R

2 is the goodness-of-fit coefficient for the time series CAPM regressions.

L 2 3 4 5 6 7 8 9 H H−L

Panel A: Samples with disasters (FGRS = 12.55 ∈ [0.90, 43.35], pGRS = 0.04 ∈ [0.00, 0.54])

E[Re] 0.77 0.79 0.81 0.83 0.82 0.85 0.85 0.85 0.85 0.83 0.06
tRe 10.48 10.68 10.54 10.26 9.78 9.83 9.57 9.27 8.69 8.31 0.85
α 0.03 0.05 0.04 0.02 −0.02 −0.03 −0.05 −0.09 −0.16 −0.21 −0.24
tα 0.70 1.36 1.17 0.46 −0.49 −0.53 −0.91 −1.23 −1.64 −2.15 −1.74
α, 2.5 −0.12 −0.04 −0.04 −0.06 −0.13 −0.15 −0.22 −0.29 −0.47 −0.55 −0.67
α, 97.5 0.16 0.15 0.12 0.11 0.09 0.09 0.09 0.08 0.07 0.04 0.11
tα, 2.5 −2.92 −1.17 −1.09 −1.75 −3.10 −3.33 −3.80 −4.06 −4.39 −4.78 −4.52
tα, 97.5 3.66 3.77 3.26 2.84 2.29 2.33 2.33 2.17 1.84 1.05 1.86
β 0.92 0.92 0.96 1.01 1.05 1.09 1.12 1.16 1.25 1.28 0.37
tβ 35.79 48.38 62.91 74.19 61.90 48.67 41.79 36.71 28.14 20.98 2.57
β, 2.5 0.78 0.84 0.90 0.93 0.94 0.96 0.95 0.95 0.94 0.92 −0.09
β, 97.5 1.12 1.03 1.04 1.08 1.17 1.24 1.31 1.41 1.64 1.72 0.93
tβ , 2.5 9.71 15.76 21.14 21.10 17.95 13.39 9.96 7.94 5.54 5.57 −2.85
tβ , 97.5 134.73 167.31 168.44 192.12 192.23 156.44 157.07 154.49 140.85 79.15 7.00
R2 0.81 0.81 0.82 0.82 0.82 0.84 0.84 0.84 0.85 0.85 0.21

Panel B: Samples without disasters (FGRS = 4.50 ∈ [2.10, 7.32], pGRS = 0.00 ∈ [0.00, 0.02])

E[Re] 0.78 0.81 0.82 0.83 0.81 0.84 0.83 0.81 0.79 0.76 −0.02
tRe 23.48 23.66 23.62 23.53 21.72 23.38 23.13 22.88 22.50 21.87 −0.48
α −0.05 0.07 0.11 0.13 0.01 0.13 0.10 0.04 −0.05 −0.25 −0.21
tα −0.69 0.99 1.58 1.82 0.16 1.77 1.27 0.53 −0.67 −3.67 −1.96
α, 2.5 −0.17 −0.06 −0.04 −0.01 −0.14 −0.01 −0.04 −0.14 −0.20 −0.37 −0.39
α, 97.5 0.07 0.22 0.27 0.29 0.16 0.29 0.25 0.17 0.08 −0.12 −0.02
tα, 2.5 −2.43 −0.84 −0.47 −0.13 −1.77 −0.16 −0.55 −1.80 −2.73 −5.62 −3.91
tα, 97.5 1.01 3.24 3.75 4.14 2.08 3.96 3.26 2.39 1.36 −1.91 −0.15
β 1.03 0.92 0.88 0.87 0.99 0.88 0.91 0.96 1.05 1.26 0.23
tβ 14.06 12.43 11.32 11.06 11.88 11.17 11.18 12.21 13.84 16.87 1.98
β, 2.5 0.89 0.75 0.72 0.68 0.83 0.69 0.74 0.81 0.88 1.10 −0.00
β, 97.5 1.17 1.08 1.04 1.02 1.15 1.04 1.08 1.15 1.20 1.41 0.46
tβ , 2.5 11.01 9.35 8.88 8.28 9.19 8.06 8.43 9.32 10.32 13.45 −0.01
tβ , 97.5 17.00 16.61 14.24 15.16 15.76 13.54 14.07 14.84 16.66 21.02 4.19
R2 0.16 0.12 0.11 0.10 0.12 0.10 0.11 0.13 0.15 0.22 0.00
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including the price of risk, φMt, and the expected market risk premium, Et[RMt+1]− rft. As such,

the conditional CAPM holds roughly in theory (but not the unconditional CAPM), meaning that

the true market beta can be backed out as (Et[Rit+1] − rft)/(Et[RMt+1] − rft). The true market

beta differs from the true beta, βMit , which is calculated as (Et[Rit+1]− rft)/φMt.

In untabulated results, we show that, not surprisingly, sorting on the true market beta yields

large average return spreads across extreme deciles in the model, with and without disasters. In

samples with disasters, the average return spread is 1% per month (t = 5.99). The unconditional

CAPM fails to price these deciles, as the post-ranking beta overshoots, giving rise to a negative

CAPM alpha of −0.69% (t = −2.49). In samples without disasters, the high-minus-low decile on

the true market beta earns on average 0.93%, which is highly significant. The post-ranking beta

moves in the opposite direction as the true market beta, with a spread of −0.83. Accordingly, the

CAPM alpha is 1.6%, which is substantially higher than the average return spread.

To illustrate the measurement errors of rolling market betas as the proxy for the true market

betas, the correlation between the true and rolling market betas is weakly positive, 2.84%, across

the pre-ranking market beta deciles in the disaster samples, but weakly negative, −5.43%, in the

no-disaster samples. Intuitively, based on 60-month rolling windows, the estimated rolling beta is

basically the prior five-year averaged beta. In contrast, the true market beta accurately and imme-

diately reflects changes in aggregate and firm-specific conditions. Within a given rolling window,

the true market beta often even mean-reverts, giving rise to opposite rankings in rolling betas.

Our quantitative results in the context of the beta “anomaly” add to a substantial body of sim-

ulation evidence on the importance of beta measurement errors in asset pricing tests. For instance,

Miller and Scholes (1972) simulate random returns from the CAPM, and find that test results on

simulated data are consistent with those from the real data.8 Gomes, Kogan, and Zhang (2003) and

8In particular, Miller and Scholes (1972) conclude: “We have shown that much of the seeming conflict between
[the empirical] results and the almost exactly contrary predictions of the underlying economic theory may simply
be artifacts of the testing procedures used. The variable that measures the systematic covariance risk of a particular
share is obtained from a first-pass regression of the individual company returns on a market index. Hence it can be
regarded at best as an approximation to the perceived systematic risk, subject to the margin of error inevitable in
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Carlson, Fisher, and Giammarino (2004) show that how size and book-to-market, and Li, Livdan,

and Zhang (2009) show how capital investment and new equity issues can dominate rolling betas

in cross-sectional regressions in simulations. Lin and Zhang (2013) show how characteristics can

dominate covariances in predicting returns in the Daniel and Titman (1997) tests. In all, we suggest

that the evidence on the beta “anomaly” in the data should be interpreted with extreme caution.

4.5 Explaining the Performance of the Consumption CAPM

Based on 2,000 artificial samples, Table 10 reports the average excess returns and consumption

betas of the 25 size and book-to-market portfolios. Panels A, B, and C use annual samples with

disasters, quarterly samples without disasters, and annual samples of the fourth-quarter consump-

tion growth without disasters, respectively, from the model’s simulations. Their sample lengths

match those in the corresponding panels in the data (Table 4). We again time-aggregate simulated

monthly data to quarterly and annual data, using the same procedure as in Table 7.

4.5.1 Explaining the Higher Average Value Premium in Small Firms

The model succeeds in reproducing a higher average value premium in small firms than in big firms.

From Panel A, which is based on annual samples with disasters, the value premium is on average

9.68% per annum (t = 6.67) in the smallest quintile, but only 2.18% (t = 2.37) in the biggest

quintile. Panel B shows that in quarterly samples without disasters, the average value premium

is 2.01% per quarter (t = 11.29) in the smallest quintile, but only 0.49% (t = 2.29) in the biggest

quintile. The results from the annual samples without disasters are largely similar (Panel C).

The key mechanism underlying this result is decreasing returns to scale. The curvature

parameter, ξ, in the production function in equation (5) is less than one (0.65 in the benchmark

calibration). As a result, the detrended capital, K̂it, is a firm-specific state variable in addition to

the firm-specific productivity, zit. With constant returns to scale, ξ = 1, the investment-to-capital

any sampling process, if to nothing else. The presence of such errors of approximation will inevitably weaken the
apparent association between mean returns and measured systematic risk in the critical second-pass tests.”
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Table 10 : The Average Excess Returns and Consumption Betas for the 25 Size and

Book-to-market Portfolios in the Model

Results are based on 2,000 simulations, each with 5,000 firms and 2,000 months. We drop the first
908 months, and treat the remaining 1, 092 months as from the model’s stationary distribution.
For each portfolio, we report its average excess return, E[Re], and its consumption beta, βC , as
well as their t-values adjusted for heteroscedasticity and autocorrelations, tRe and tβC , respectively.
Returns in Panels A and C are in annual percent, and those in Panel B in quarterly percent.

L 2 3 4 H L 2 3 4 H

Panel A: Annual samples with disasters
E[Re] tRe

Small 13.69 14.54 15.95 17.90 23.37 12.34 11.38 10.77 10.43 10.26
2 12.33 13.29 14.21 15.45 18.90 12.00 11.71 11.43 11.25 10.78
3 12.05 12.17 12.42 12.95 14.62 10.00 12.01 11.91 11.33 10.33
4 10.57 10.40 10.42 10.85 13.84 12.01 11.89 11.47 10.59 10.41
Big 7.96 7.92 8.18 8.86 10.14 10.16 9.96 9.80 9.67 9.23

βC tβC

Small −0.64 −0.77 −0.93 −1.15 −1.28 −0.61 −0.68 −0.72 −0.74 −0.47
2 −0.49 −0.59 −0.72 −0.89 −1.34 −0.55 −0.62 −0.69 −0.81 −0.97
3 −0.43 −0.47 −0.53 −0.64 −0.74 −0.50 −0.56 −0.63 −0.72 −0.70
4 −0.32 −0.33 −0.36 −0.46 −0.69 −0.41 −0.46 −0.52 −0.64 −0.79
Big −0.07 −0.08 −0.10 −0.22 −0.23 −0.01 −0.04 −0.08 −0.28 −0.09

Panel B: Quarterly samples without disasters
E[Re] tRe

Small 3.16 3.31 3.56 3.92 5.17 45.90 34.22 31.77 32.39 29.73
2 2.89 3.08 3.24 3.45 4.09 29.73 31.09 31.73 32.26 28.72
3 2.84 2.85 2.88 2.96 3.33 16.28 29.04 30.16 28.11 19.54
4 2.53 2.48 2.47 2.53 3.19 23.35 23.40 21.99 18.86 18.87
Big 1.93 1.91 1.96 2.07 2.42 13.66 13.75 14.14 15.06 14.71

βC tβC

Small 0.11 0.12 0.12 0.13 0.27 1.45 1.13 0.96 0.95 1.39
2 0.12 0.12 0.13 0.13 0.18 1.10 1.04 1.10 1.09 1.14
3 0.16 0.13 0.14 0.16 0.25 0.83 1.19 1.30 1.36 1.30
4 0.16 0.18 0.22 0.24 0.24 1.33 1.54 1.71 1.56 1.37
Big 0.74 0.93 1.08 0.94 0.85 4.83 6.32 7.60 6.51 4.74

Panel C: Annual samples with fourth-quarter consumption growth without disasters
E[Re] tRe

Small 13.54 14.20 15.34 17.00 22.80 43.01 32.13 30.08 30.64 28.12
2 12.35 13.21 13.91 14.86 17.76 28.37 29.75 30.32 30.72 27.52
3 12.13 12.15 12.28 12.63 14.31 15.79 27.81 28.90 26.74 18.91
4 10.75 10.53 10.48 10.72 13.66 22.29 22.50 21.19 18.31 18.16
Big 8.13 8.04 8.25 8.75 10.28 13.21 13.29 13.76 14.64 14.31

βC tβC

Small 0.21 0.23 0.22 0.24 0.50 1.55 1.23 0.99 1.01 1.42
2 0.24 0.22 0.24 0.25 0.31 1.27 1.17 1.23 1.18 1.11
3 0.27 0.22 0.24 0.26 0.35 0.83 1.17 1.30 1.28 1.07
4 0.26 0.28 0.30 0.32 0.36 1.21 1.38 1.38 1.27 1.09
Big 0.82 0.97 1.08 0.95 0.84 3.22 4.03 4.62 4.02 2.82
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ratio, Îit/K̂it, is independent of capital, meaning that K̂it is not a separate state variable. When

ξ < 1, Îit/K̂it clearly depends on K̂it, with small firms investing faster than big firms (Figure 4).

Figure 5 shows further that big spikes in risk and risk premiums in the disaster states accrue to firms

with small capital stock and low firm-specific productivity. This pattern implies that the expected

return spread between the low- and high-zit firms is higher in small-K̂it firms than in big-K̂it firms.

The disaster risk also plays a role in reproducing the higher value premium in small firms.

The presence of the disaster state and the subsequent recovery state enlarges the cross-sectional

dispersion in the detrended capital, making firms more heterogeneous. As a result, we can perform

independent sorts on size and book-to-market to form the 25 portfolios in simulated samples.

Without showing the details, we can report that such independent sorts are infeasible in the Lin

and Zhang (2013) model, which is in turn a simplified version of the Zhang (2005) model. Because

size and book-to-market are negatively correlated in the cross section, several portfolios contain no

firms in simulated samples, including the small-growth and the big-value portfolios. The aggregate

shock follows the normal distribution in the prior models, which fail to generate a sufficient amount

of firm heterogeneity to allow for the five-by-five independent sorts on size and book-to-market.

4.5.2 Explaining the Failure of the Consumption CAPM

More important, our model largely replicates the poor performance of the consumption CAPM in

the data (Table 4). Table 10 shows that the consumption betas are mostly insignificant, and are

all negative in the annual samples with disasters. In the second-stage cross-sectional regressions,

Table 11 shows that the intercept estimates are all significantly positive. The estimates of the price

of consumption risk are all significantly negative, although its 95% confidence intervals are wide in

the simulations. In the annual samples with disasters (Panel A), the cross-sectional R2 is 61%, but

its 95% confidence interval ranges from 1% to 95%. As such, the cross-sectional R2 seems largely

uninformative. The χ2 test strongly rejects the consumption CAPM, as the 95% confidence inter-

val of its p-value ranges from 0.00 to 0.04. The cross-sectional R2 is 30% in the quarterly samples
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without disasters (Panel B). More important, the χ2 test again strongly rejects the consumption

CAPM, as the 95% confidence interval of its p-value ranges from 0.00 to 0.01.

Our model cannot explain the success of the Jagannathan-Wang (2007) fourth-quarter consump-

tion growth model (Panel C). The intercept, φ0, is economically large and statistically significant,

and the slope, φ1, is again negative and significant. The p-value of the χ2 test is 0.07. We interpret

the insignificance as probably due to the lack of power of the test, as only 25% of the observations

are used. Intuitively, investors make the consumption and portfolio choice decision every period in

the model, and the fourth-quarter does not stand out as special.

We emphasize that in our model, a nonlinear consumption CAPM holds exactly by construction,

i.e., Et[Mt+1Rit+1] = 1, in which Mt+1 is the true pricing kernel given by equation (27). However,

in the standard implementation of the consumption CAPM, the pricing kernel is specified as a linear

function of the aggregate consumption growth. With recursive utility, the pricing kernel depends

not only on the contemporaneous consumption growth, but also on (a nonlinear function of) the

continuation value of future utility. To quantify the impact of the specification error of the pricing

kernel in the context of our model, we repeat the consumption CAPM tests, but with the aggregate

consumption growth replaced by the true pricing kernel, which we can compute in simulations.

Table 12 details the two-stage tests. Panel A shows that the estimated beta, β̂
M
, from regress-

ing returns on the true pricing kernel is generally higher for value firms than for growth firms, going

in the right direction as the average returns. The β̂
M

estimates are also all significantly positive,

both in annual samples with disasters and in quarterly samples without disasters. The magnitude

of the regression-based estimates of β̂
M

is largely in line with that of the true beta calculated on

the grid (Panel D of Figure 6). Also, the magnitude of β̂
M

in samples without disasters is roughly

three times of that in samples with disasters. Intuitively, the average returns are comparable in

magnitude across the two types of samples. However, the pricing kernel’s volatility is higher in sam-

ples with disasters than without disasters, meaning that the realized pricing of risk, φMt, is lower
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Table 11 : Cross-sectional Regression Tests of the Consumption CAPM in the Model

Results are based on 2,000 simulations, each with 5,000 firms and 2,000 months. We report cross-
sectional tests of the consumption CAPM. Testing assets are the 25 Fama-French size and book-
to-market portfolios. Consumption betas are estimated from time-series regressions of portfolio
excess returns on the aggregate consumption growth. Panel A uses annual consumption growth on
the disaster samples, Panel B quarterly consumption growth on the no-disaster samples, and Panel
C the fourth-quarter consumption growth on the no-disaster samples. φ0 is the intercept, φ1 the
slope, tFM the Fama-MacBeth t-values, and tS the Shanken-adjusted t-values. χ2 is the χ2-statistic
testing that all the pricing errors, φ0 +αi, are jointly zero (Cochrane 2005b, equation [12.14]). We
adjust the variance-covariance matrix of the pricing errors with the Shanken (1992) method (see
Cochrane 2005b, equation [12.20]). pχ2 is the p-value for the χ2 test, with 23 degrees of freedom.
The estimates of φ0 and φ1 are annual percent in Panels A and C, and in quarterly percent in Panel
B. We report the cross-simulation averaged results, as well as the 2.5 and 97.5 percentiles.

Panel A: Annual, Panel B: Quarterly, Panel C: Fourth-quarter,
with disasters without disasters without disasters

φ0 φ1 φ0 φ1 φ0 φ1

Estimates 9.09 −6.48 3.34 −1.19 14.05 −3.40
2.5 5.28 −13.46 3.14 −1.67 12.83 −6.81
97.5 13.70 1.46 3.53 −0.72 15.37 −0.48

tFM 15.57 −6.30 73.94 −13.67 63.93 −8.61
2.5 6.55 −12.84 53.97 −18.11 49.83 −15.53
97.5 52.25 1.48 83.30 −8.26 79.11 −1.28

tS 8.22 −3.31 44.22 −9.14 36.59 −5.33
2.5 3.81 −5.95 27.35 −10.94 19.28 −7.77
97.5 25.46 1.45 58.20 −6.77 60.92 −1.26

χ2 194.32 114.99 173.29
2.5 35.69 41.59 17.16
97.5 1171.36 418.40 1123.26

pχ2 0.01 0.00 0.07
2.5 0.00 0.00 0.00
97.5 0.04 0.01 0.80

R2 0.61 0.30 0.16
2.5 0.01 0.12 0.00
97.5 0.95 0.49 0.46
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in samples without disasters. Accordingly, the β̂
M

estimates must be higher in samples without

disasters to match the average returns that are comparable to those with disasters.

In second-stage cross-sectional regressions, Panel B shows that with disasters, the intercept, φ̂0,

is economically small, only 1% per annum. Although its Fama-MacBeth t-value is significant, 2.43,

the Shanken-adjusted t-value is not, only 0.9. The price of consumption risk, φ̂M , is 5.19, which

is highly significant. The χ2 test fails to reject the null that all the pricing errors are jointly zero

across the testing assets (p-value = 0.55). In addition, the cross-sectional R2 is high, 89%, and its

95% confidence interval spans from 55% to 97%. Interestingly, even the true pricing kernel does

not perform perfectly in the standard consumption CAPM test. The culprit is the test’s uncondi-

tional form. The regression-based beta, β̂
M
, is estimated on the full sample, and is assumed to be

constant. In contrast, the true beta, βMit , is time-varying, as shown in Figure 5.

In quarterly samples without disasters, the true model’s performance deteriorates. The intercept

is 2% per quarter, which is also significant per the Fama-MacBeth and Shanken t-values. The price

of consumption risk is only 0.11, but highly significant. The χ2 test again fails to reject the null that

all the pricing errors are jointly zero across the testing assets (p-value = 0.51). In addition, the cross-

sectional R2 is lower, only 43%, and its 95% confidence interval ranges from 13% to 79%. Intuitively,

without the extreme observations from disasters and subsequent recoveries, the regression-based

beta, β̂
M
, from projecting returns on the true pricing kernel is a noisy proxy for the true beta.

Figure 9 sheds further light on the detachment of the true pricing kernel from the consumption

growth in our model. Panel A reports the scatter plot and fitted line from regressing the pricing

kernel on the contemporaneous consumption growth by stacking observations from all the disaster

samples. Despite the model’s single-factor structure, the regression R2 is only 0.24%, and the slope

is only weakly negative, −0.027. Perhaps surprisingly, the onset of disasters is not associated with

particularly low contemporaneous consumption growth, and the onset of recoveries not associated

with particularly high consumption growth. Intuitively, when a disaster shock hits, the pricing
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Table 12 : Two-stage Cross-sectional Regression Tests of the Consumption CAPM with the

True Pricing Kernel in the Model

Results are based on 2,000 simulations, each with 5,000 firms and 2,000 months. For each of the 25

size and book-to-market portfolios, we report the consumption beta, β̂
M
, estimated from regressing

excess returns on the true pricing kernel,Mt+1, as well as the t-value adjusted for heteroscedasticity
and autocorrelations, t

β̂
M . We also report the second-stage cross-sectional regressions, including

the intercept, φ̂0, the slope, φ̂M , the Fama-MacBeth t-value, tFM, and the Shanken-adjusted t-value,
tS. χ

2 is the χ2-statistic testing that all the pricing errors, φ0+αi, are jointly zero (Cochrane 2005b,
equation [12.14]). We adjust the variance-covariance matrix of the pricing errors with the Shanken
(1992) method (see Cochrane 2005b, equation [12.20]). pχ2 is the p-value for the χ2 test, with 23
degrees of freedom. We report the cross-simulation averages, as well as the 2.5 and 97.5 percentiles.

Panel A: First-stage time series regressions

L 2 3 4 H L 2 3 4 H

Annual samples with disasters

β̂
M

t
β̂
M

Small 0.04 0.04 0.04 0.05 0.07 8.26 7.87 7.58 7.20 7.08
2 0.03 0.04 0.04 0.04 0.05 8.51 8.25 8.04 7.85 7.71
3 0.03 0.03 0.03 0.04 0.04 8.26 8.53 8.34 8.03 7.49
4 0.03 0.03 0.03 0.03 0.04 8.94 8.79 8.63 8.16 8.47
Big 0.02 0.02 0.02 0.02 0.03 8.79 8.53 8.26 7.76 7.49

Quarterly samples without disasters

β̂
M

t
β̂
M

Small 0.12 0.13 0.14 0.15 0.25 7.78 5.74 5.20 5.32 6.11
2 0.12 0.12 0.13 0.14 0.17 5.09 5.26 5.36 5.49 5.17
3 0.12 0.12 0.12 0.12 0.15 2.99 5.10 5.32 4.95 3.70
4 0.11 0.11 0.11 0.11 0.15 4.29 4.27 4.08 3.53 3.57
Big 0.09 0.10 0.10 0.10 0.12 2.66 2.81 2.91 2.99 2.90

Panel B: Second-stage cross-sectional regressions

Annual, with disasters Quarterly, without disasters

φ̂0 φ̂M φ̂0 φ̂M

Estimates 0.01 5.19 0.02 0.11
2.5 −0.01 0.36 0.01 0.06
97.5 0.06 7.69 0.02 0.26

tFM 2.43 8.35 19.27 15.46
2.5 −1.48 3.17 7.44 8.76
97.5 17.71 18.90 30.21 20.65

tS 0.90 3.56 6.82 5.42
2.5 −0.60 1.54 1.93 3.78
97.5 5.65 7.09 14.23 8.04

χ2 30.96 26.87
2.5 9.09 10.99
97.5 119.08 55.42

pχ2 0.55 0.51
2.5 0.00 0.00
97.5 1.00 0.98

R2 0.89 0.43
2.5 0.55 0.13
97.5 0.97 0.79
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kernel spikes up immediately, as the investor is anticipating multiple years of extremely bad times.

However, consumption smoothing kicks in immediately as well. As forward-looking as the stock

market return, real investment falls immediately to smooth consumption. Consequently, consump-

tion only falls cumulatively over multiple years. Analogously, when the economy switches from the

disaster to recovery state, the pricing kernel drops, and the market return spikes up immediately.

Real investment increases right away, but consumption raises only gradually.

Consumption smoothing also explains why the CAPM performs better than the consumption

CAPM in the disaster samples in our model, echoing Campbell and Cochrane (2000). Comparing

Panel A with Panel A in Figure 8 shows that the market excess return is much more responsive than

the consumption growth to the disaster shock. The key is again the forward-looking nature of the

pricing kernel, the stock market, and real investment, as well as smoothed nature of consumption.

4.6 Comparative Statics

To gain further insights into the economic mechanism, we conduct comparative statics on a wide

array of parameters. We group the parameters into three categories: (i) disaster dynamics: the

disaster size, λD, the disaster persistence, θ, the disaster probability, η, the recovery persistence, ν,

and the recovery size, ν; (ii) technology: the adjustment costs parameters, a+, a−, c+, and c−, the

curvature in production, ξ, the fixed costs parameter, f , the liquidation parameter, s, the reorga-

nization costs, κ, and the delisting return, R̃; as well as (iii) preferences: the risk aversion, γ, and

the intertemporal elasticity of substitution, ψ. In each experiment, we only vary one parameter,

while keeping all the others unchanged from the benchmark calibration.

Table 13 details comparative statics for the CAPM regressions of the book-to-market deciles.

From the first two columns, increasing the disaster size and persistence raises the average value

premium, and exacerbates the failure of the CAPM in samples without disasters. Intuitively, a

larger disaster, or a more persistent disaster, strengthens nonlinear disaster dynamics, making the

linear CAPM a poorer proxy for the pricing kernel, especially in normal times. Raising the disas-
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Figure 9 : The Pricing Kernel versus the Aggregate Consumption Growth in the Model

The pricing kernel is given by Mt+1 = ̺ exp [− (ĝct+1 + g + gt) /ψ]
[

exp[(1−γ)(ût+1+ĝct+1)]
Et[exp[(1−γ)(ût+1+ĝct+1)]]

] 1/ψ−γ
1−γ

,

in which ĝct+1 is the detrended consumption growth, g is the balanced growth rate, gt the demeaned
aggregate productivity growth, and ût the log utility-to-consumption ratio (equation [27]). Results
are based on 2,000 simulations. This figure reports the scatter plot and the fitted line from regressing
the pricing kernel on aggregate consumption growth. We time aggregate monthly consumption to
annual consumption in Panel A and to quarterly consumption in Panel B. The fitted line in Panel A
is estimated by stacking time-aggregated annual observations from all the samples with disasters,
and the fitted line in Panel B by stacking time-aggregated quarterly observations from all the
samples without disasters. Consumption growth is in percent. In Panel A, the onset of disasters is
in red plus, the onset of recoveries in green square, and normal times in blue circle.

Panel A: Annual samples with disasters Panel B: Quarterly samples without disasters

ter probability, η, goes in the same direction, but its quantitative impact is small. Intuitively, η

mainly determines the percentage of samples with at least one disaster out of 2,000 simulations.

However, conditioning on at least one disaster appearing in a given sample, the nonlinear dynamics

are mostly governed by the disaster size and persistence.

The recovery size and persistence have little impact on the magnitude of the average value

premium and the performance of the CAPM. Intuitively, risk and risk premiums are mostly

determined by the dynamics in bad times, particularly disasters, in which the representative

household’s marginal utility is the highest. In contrast, the marginal utility is the lowest in the
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Table 13 : Comparative Statics, the CAPM Regressions of the Book-to-market Deciles

Results are averaged across 2,000 simulations. E[Re] is the average return, α the CAPM alpha,
and β the market beta of the value-minus-growth decile. E[Re] and α are in monthly percent. The
t-values are adjusted for heteroscedasticity and autocorrelations. Each column shows results from
one experiment. In each column, we vary only one parameter, while keeping the others unchanged
from the benchmark calibration. The alternative parameter values in the comparative statics are:
λD = −3.25%, θ = 0.985, η = 3%/12, ν = 0.98, λR = 2%, a+ = 0.045, a− = 0.065, c+ = 100,
c− = 200, ξ = 0.7, f = 0.01, s = 0.15, κ = 0.35, R̃ = −16%, γ = 6, and ψ = 2. The simulation
design in each experiment is identical to that in Table 8.

λD θ η ν λR a+ a− c+ c− ξ f s κ R̃ γ ψ

Panel A: Samples with disasters

E[Re] 0.75 0.41 0.49 0.45 0.45 0.30 0.53 0.44 0.43 0.38 0.51 0.22 0.39 0.44 0.55 0.52
tRe 6.67 4.29 4.87 4.54 4.75 3.68 5.17 4.72 4.53 5.09 5.09 3.60 4.31 4.72 6.35 4.55
α −0.46−0.63−0.32−0.37−0.35−0.25−0.34−0.34−0.39−0.52−0.29−0.19−0.39−0.36−0.40−0.44
tα −2.47−2.96−2.34−2.62−2.49−2.10−2.37−2.58−2.65−2.88−2.11−2.08−2.69−2.49−2.41−2.65
β 1.09 1.08 1.03 1.00 0.99 0.69 1.08 1.05 1.04 1.11 1.00 0.54 0.98 1.01 0.95 0.98
tβ 8.04 8.40 8.08 8.07 7.91 6.85 7.87 7.97 8.11 7.66 7.85 7.86 8.10 8.01 7.66 7.89

Panel B: Samples without disasters

E[Re] 0.62 0.53 0.42 0.39 0.39 0.21 0.41 0.37 0.40 0.40 0.41 0.22 0.37 0.39 0.52 0.43
tRe 10.84 9.53 7.95 7.52 7.55 3.94 7.95 7.63 7.69 10.40 7.46 4.45 7.14 7.51 9.36 8.07
α 0.51 0.44 0.31 0.26 0.25−0.06 0.28 0.31 0.26 0.22 0.23 0.15 0.22 0.25 0.40 0.34
tα 3.26 3.07 2.71 2.28 2.22−0.61 2.47 2.98 2.34 2.08 1.93 1.37 1.98 2.22 2.79 2.75
β 0.09 0.09 0.14 0.17 0.17 0.34 0.16 0.08 0.17 0.21 0.23 0.09 0.18 0.18 0.11 0.10
tβ 0.68 0.65 1.12 1.35 1.41 2.94 1.23 0.59 1.37 1.74 1.79 0.76 1.48 1.40 0.86 0.85

recovery state, giving rise to small spreads in risk and risk premium between value and growth firms.

The upward nonconvex costs parameter, a+, and its downward counterpart, a−, work in the

opposite direction. While increasing a+ reduces the average value premium and its CAPM alpha

in normal times, increasing a− does the opposite. Intuitively, the a− effect works through the

asymmetry mechanism. A high value of a− means that value firms face a higher hurdle in reducing

their unproductive capital in the disaster state, giving rise to higher risk and risk premiums.

Why does the upward nonconvex costs parameter, a+, work differently? Intuitively, firms dis-

invest very infrequently. Across simulations, on average only 0.6% of the firm-month observations

have negative investment. Such a low disinvestment frequency means that a+ is the main parameter

that determines the magnitude of nonconvex adjustment costs, a+Kit. A lower a+ means that firms

would in general have higher capital, especially value firms. When a disaster hits, value firms are

burdened with more unproductive capital, reinforcing the asymmetry mechanism. As such, a lower
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a+ value increases the average value premium and its CAPM alpha in the no-disaster samples.

Similarly, the upward and downward convex costs parameters, c+ and c−, respectively, work

in the opposite direction, but their impact is small. A higher c− works through the asymmetry

mechanism by restricting the flexibility of value firms in downsizing in disasters, giving rise to

higher risk and risk premiums. However, because of the vast majority of positive investment, the

upward parameter, c+, mainly determines the magnitude of convex costs. A lower c+ implies that

firms have more capital in general, especially value firms, reinforcing the asymmetry mechanism.

In addition, increasing the curvature parameter, ξ, increases the value premium in the no-

disaster samples. Increasing the fixed costs parameter, f , raises the value premium, but decreases

its CAPM alpha in the no-disaster samples. A higher f means a higher operating leverage for value

firms, increasing the value premium (Carlson, Fisher, and Giammarino 2004). However, a higher

f also means higher market beta for the value premium, decreasing its CAPM alpha.

The next three technological parameters involve entry and exit, including the liquidation value,

s, the reorganization costs, κ, and the delisting return, R̃. Increasing s reduces the average value

premium and its CAPM alpha. Intuitively, with a higher s, in the event of exit, shareholders get to

extract a higher liquidation value of sKit, which is in effect a free abandonment option. This op-

tion acts as an insurance against the disaster risk. The abandonment option is especially attractive

for shareholders of value firms, which tend to have more unproductive capital than growth firms.

Consequently, instead of facing asymmetric adjustment costs in disasters, the shareholders opt to

exit, thereby reducing the risk for value firms relative to growth firms.

In addition, a higher reorganization cost, κ, reduces the value premium and its CAPM alpha,

but the effect is small in the no-disaster samples. The impact of the delisting return, R̃, is negligible.

Finally, increasing the risk aversion, γ, or the intertemporal elasticity of substitution, ψ, strengthens

the nonlinear dynamics, raising the value premium and its CAPM alpha in the no-disaster samples.

For completeness, Table 14 reports comparative statics for the market beta deciles. The re-
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Table 14 : Comparative Statics, the CAPM Regressions of the Pre-ranking Market Beta

Deciles

Results are averaged across 2,000 simulations. E[Re] is the average return, α the CAPM alpha,
and β the market beta of the high-minus-low market beta decile. E[Re] and α are in monthly
percent. The t-values are adjusted for heteroscedasticity and autocorrelations. Each column shows
results from one experiment. In each column, we vary only one parameter, while keeping the others
unchanged from the benchmark calibration. The alternative parameter values in the comparative
statics are: λD = −3.25%, θ = 0.985, η = 3%/12, ν = 0.98, λR = 2%, a+ = 0.045, a− = 0.065,
c+ = 100, c− = 200, ξ = 0.7, f = 0.01, s = 0.15, κ = 0.35, R̃ = −16%, γ = 6, and ψ = 2. The
simulation design in each experiment is identical to that in Table 9.

λD θ η ν λR a+ a− c+ c− ξ f s κ R̃ γ ψ

Panel A: Samples with disasters

E[Re] 0.08 0.01 0.08 0.07 0.07 0.05 0.07 0.06 0.06 0.03 0.06−0.81 0.06 0.06 0.06 0.06
tRe 1.00 0.25 1.08 0.97 0.92 0.68 0.90 0.88 0.83 0.88 0.86−4.26 0.84 0.84 0.84 0.84
α −0.30−0.22−0.20−0.24−0.24−0.22−0.24−0.23−0.24−0.25−0.24−1.09−0.24−0.24−0.24−0.24
tα −1.69−1.47−1.62−1.81−1.74−1.68−1.70−1.71−1.78−1.86−1.73−3.23−1.74−1.76−1.77−1.74
β 0.33 0.24 0.35 0.38 0.37 0.33 0.37 0.37 0.37 0.34 0.37 0.66 0.37 0.37 0.37 0.37
tβ 2.46 2.28 2.56 2.79 2.62 2.29 2.56 2.53 2.63 2.92 2.58 3.18 2.56 2.61 2.55 2.59

Panel B: Samples without disasters

E[Re]−0.03−0.03−0.02−0.02−0.01−0.03−0.02−0.02−0.02 0.00−0.02−0.07−0.02−0.02−0.02−0.02
tRe −0.50−0.55−0.48−0.51−0.29−0.52−0.34−0.32−0.47 0.01−0.48−1.38−0.47−0.49−0.40−0.49
α −0.27−0.25−0.21−0.21−0.20−0.21−0.19−0.19−0.21−0.16−0.21−0.25−0.21−0.21−0.20−0.21
tα −1.89−1.90−2.00−1.97−1.85−2.04−1.82−1.80−1.98−1.53−1.95−2.42−1.95−1.97−1.90−1.97
β 0.22 0.22 0.23 0.23 0.23 0.23 0.22 0.22 0.23 0.19 0.23 0.24 0.23 0.23 0.23 0.23
tβ 1.87 1.87 2.03 1.98 1.97 2.13 1.89 1.89 2.01 1.72 1.98 2.09 1.97 1.99 2.02 1.99

sults are quantitatively similar to those in the benchmark calibration. The only exception is the

liquidation value parameter, s. Raising s from zero to 15% reduces the average return of the

high-minus-low market beta decile from 0.06% per month (t = 0.85) in the benchmark calibration

(Table 9) to −0.81% (t = −4.26) in the disaster samples in Panel A. As noted, a positive s gives the

shareholders an abandonment option, which reduces risk and risk premiums. The low beta decile

earns 0.59% (untabulated), which is lower than 0.77% with s = 0. More important, the high beta

decile earns only −0.22%, which is substantially lower than 0.83% with s = 0. Intuitively, with a

higher s at 15%, many high beta stocks exit the economy in the disaster state, taking the large,

negative delisting return of −12.33%. This effect is largely absent in Panel B without disasters.

Finally, Table 15 reports comparative statics for the consumption CAPM tests. Without going

through the details, we can report that the quantitative results are largely similar to those in the

benchmark calibration shown in Table 11.
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Table 15 : Comparative Statics, the Consumption CAPM Test on the 25 Size and Book-to-market Portfolios

Results are averaged across 2,000 simulations. We report cross-sectional tests of the consumption CAPM. Testing assets are the 25
Fama-French size and book-to-market portfolios. Consumption betas are from time series regressions of portfolio excess returns on the
aggregate consumption growth. Panel A uses annual consumption growth on the disaster samples, and Panel B quarterly consumption
growth on the no-disaster samples. φ0 is the intercept, φ1 the slope, tFM the Fama-MacBeth t-values, and tS the Shanken-adjusted
t-values. χ2 is the χ2-statistic testing that all the pricing errors, φ0+αi, are jointly zero (Cochrane 2005b, equation [12.14]). We adjust
the variance-covariance matrix of the pricing errors with the Shanken (1992) method (see Cochrane 2005b, equation [12.20]). pχ2 is
the p-value for the χ2 test, with 23 degrees of freedom. The estimates of φ0 and φ1 are annual percent in Panel A, and in quarterly
percent in Panel B. Each column shows results from one experiment. In each column, we vary only one parameter, while keeping
the others unchanged from the benchmark calibration. The alternative parameter values are: λD = −3.25%, θ = 0.985, η = 3%/12,
ν = 0.98, λR = 2%, a+ = 0.045, a− = 0.065, c+ = 100, c− = 200, ξ = 0.7, f = 0.01, s = 0.15, κ = 0.35, R̃ = −16%, γ = 6, and ψ = 2.

λD θ η ν λR a+ a− c+ c− ξ f s κ R̃ γ ψ

Panel A: Annual samples with disasters

φ0 9.04 10.06 8.62 9.16 9.66 9.01 9.02 8.91 9.04 8.95 8.96 10.26 9,01 9.01 8.91 9.02
tFM 14.53 12.59 12.72 13.97 14.35 15.22 15.22 14.99 15.53 15.32 15.31 13.35 15.18 15.18 15.06 15.27
tS 7.92 7.63 6.95 7.35 7.52 7.97 7.97 7.90 8.09 7.98 8.02 9.96 7.98 7.97 7.86 7.94

φ1 −7.15 −5.64 −7.06 −7.68 −7.91 −6.57 −6.56 −6.62 −6.57 −6.23 −6.59 −3.17 −6.55 −6.55 −6.57 −6.65
tFM −6.56 −4.64 −5.80 −5.99 −6.29 −6.37 −6.37 −6.38 −6.42 −6.37 −6.40 −4.74 −6.35 −6.31 −6.33 −6.42
tS −3.71 −2.65 −3.17 −3.09 −3.26 −3.32 −3.32 −3.33 −3.37 −3.32 −3.35 −3.90 −3.32 −3.29 −3.30 −3.34

χ2 166.8 208.8 132.1 147.5 157.8 174.2 174.5 172.8 183.2 186.9 181.0 464.7 175.07 174.5 170.81 174.9
pχ2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01
R2 0.66 0.48 0.66 0.64 0.64 0.63 0.62 0.63 0.62 0.63 0.63 0.56 0.62 0.62 0.63 0.63

Panel B: Quarterly samples without disasters

φ0 3.34 3.34 3.34 3.33 3.34 3.34 3.34 3.34 3.34 3.35 3.34 2.99 3.34 3.34 3.34 3.34
tFM 73.61 73.86 72.80 73.25 73.42 73.48 73.57 73.82 74.28 73.25 73.27 60.72 73.57 73.47 74.04 73.42
tS 44.17 43.88 43.33 43.42 43.96 44.05 44.10 44.43 44.12 44.02 44.05 38.75 44.20 43.98 44.23 43.87

φ1 −1.19 −1.21 −1.20 −1.28 −1.21 −1.19 −1.19 −1.18 −1.21 −0.99 −1.19 −1.09 −1.19 −1.19 −1.20 −1.19
tFM −13.64 −13.79 −13.75 −13.78 −13.66 −13.65 −13.66 −13.59 −13.81 −13.15 −13.58 −11.06 −13.61 −13.68 −13.73 −13.66
tS −9.16 −9.14 −9.16 −9.06 −9.13 −9.16 −9.17 −9.15 −9.19 −8.74 −9.12 −7.64 −9.14 −9.17 −9.17 −9.15

χ2 123.0 135.6 96.7 107.3 136.5 112.9 112.5 114.1 116.2 110.0 111.2 242.4 112.40 112.7 117.60 112.1
pχ2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.29 0.30 0.30 0.30 0.29 0.29 0.29 0.29 0.30 0.27 0.29 0.40 0.29 0.30 0.30 0.29
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5 Conclusion

Rare disasters help explain the value premium puzzle that value stocks earn higher average returns

than growth stocks, despite their similar market betas. In a general equilibrium production econ-

omy with disasters and heterogenous firms, value stocks are more exposed to the disaster risk than

growth stocks. More important, the disaster risk induces strong nonlinearity in the pricing kernel.

In finite samples, in which disasters are not materialized, the estimated market beta fails to measure

the higher exposures of value stocks to disasters than growth stocks. This strong nonlinearity allows

the model to explain the failure of the CAPM in the post-1963 sample. In contrast, in finite samples

in which disasters are materialized, the CAPM does much better in explaining the value premium.

In addition, due to severe beta measurement errors, the relation between the pre-ranking market

beta and the average return is flat in the model’s simulations, despite a strong positive relation be-

tween the true beta and the expected return. As such, the model also explains the beta “anomaly.”

A fundamental innovation of our work relative to prior theoretical models is general equilibrium,

in which consumption and the pricing kernel are endogenous. Endogenous consumption makes it

feasible for us to quantify the performance of the consumption CAPM within our model. Despite a

nonlinear consumption CAPM structure, our model succeeds in replicating the failure of the stan-

dard consumption CAPM, in which the pricing kernel is severely misspecified as a linear function

of the aggregate consumption growth. In totality, our extensive simulation results suggest that the

poor performance of the (consumption) CAPM in the data should be interpreted with caution.

The widely documented empirical failures of standard asset pricing models might have more to do

with the deficiencies of standard empirical tests, rather than deficiencies of economic theory.
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A Computation

A.1 Solving the Firms’ Problem

As an intermediate step for solving the detrended value function in equation (29), we solve for the
log utility-to-consumption ratio, ût, by iterating on equation (26), and calculateMt+1 from equation
(27), which only depends on gt, gt+1, and Kt. We then solve firms’ problem by iterating on:

V̂ (K̂it, Zit, gt,Kt) = max
{χit}

[
max

{K̂it+1}
D̂it + Et

[
Mt+1V̂ (K̂it+1, Zit+1, gt+1,Kt+1)

]
exp(gxt), sK̂it

]
. (A1)

We use 100 grid points for the detrended capital, K̂it. The lower bound of the K̂it grid is
0.01, and the upper bound 25. The K̂it grid is formed recursively as in McGrattan (1999), with
K̂j = K̂j−1 + c1 exp(c2(j − 2)), in which j = 2, ..., 100 is the index of grid points, and c1 and c2 are
two constant parameters chosen to provide the desired number of grid points and the grid’s upper
bound, given a predetermined lower bound of K̂1 = 0.01. A seven-point grid for the aggregate pro-
ductivity growth, gt, is constructed as in Section 3.3, and a nine-point grid for the log firm-specific
productivity, zit, is formed via the Rouwenhorst (1995) procedure. To form the Kt grid, we use 15
even-spaced points from 0.25 to seven. The boundaries are chosen judiciously via trial and error
to be never binding in simulations. We work directly with the discrete state spaces of gt and zit,
both in solving and simulating the model. For the continuous state spaces of K̂it and Kt, we use
the piecewise linear interpolation extensively to obtain the model’s key moments corresponding to
the K̂it and Kt values that lie between the grid points on their respective grid. We use a simple
(but robust) global search routine to maximize the right-hand side of equation (A1). We construct
a dense grid for the next period detrended capital, K̂it+1 (the control variable), by assigning 100
even-spaced points between any two adjacent points on the grid of K̂it (the state variable). We
compute the objective function on each point in the K̂it+1 grid, and take the maximum.

A.2 Approximate Aggregation

We solve the general equilibrium model with an approximate aggregation algorithm. Starting with
an initial guess on the equilibrium laws of motion for the average detrended capital, Kt+1, and
the detrended consumption, Ĉt, we solve individual firms’ problem. Based on the resulting optimal
policy functions, we simulate the economy for a large number of firms, and use the simulated data to
update the guess for the equilibrium laws of motion. We continue the iteration process until the laws
of motion converge. We then check the accuracy of the laws of motion by comparing the implied
Kt+1 and Ĉt values with their actual, realized values in simulations. If the accuracy is high, we stop.
Otherwise, we specify different functional forms for the laws of motion, and repeat the process.

Specifically, suppose at the jth iteration, the current guess for the laws of motion is given by:

log Ĉ
(j)
t (gt = gi) = a

(j)
0i + a

(j)
1i logKt + a

(j)
2i

(
logKt

)2
, (A2)

logK
(j)
t+1(gt = gi) = b

(j)
0i + b

(j)
1i logKt + b

(j)
2i

(
logKt

)2
, (A3)

in which i ∈ [1, 7], and “(gt = gi)” indicates the values of log Ĉ
(j)
t and logK

(j)
t+1 conditional on

gt = gi. We adopt the quadratic functional form in logs, and allow the coefficients to depend on
the aggregate state, gt, to accommodate the strong nonlinearity of the model.
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Under the approximate laws of motion, we solve firms’ problem by iterating on the value

function in equation (A1), and obtain optimal policy functions, K̂
(j)
it+1

(
K̂it, Zit, gt,Kt

)
and

χ
(j)
it+1

(
K̂it, Zit, gt,Kt

)
. Based on the optimal policy functions, we simulate a long series of ag-

gregate productivity growth, {gt}
T
t=1, starting from g1 = ḡ, with T = 55, 000 monthly periods, and

a panel of N = 30, 000 firms over the T periods. The initial detrended capital, K̂it, is set to be one,
and the initial log firm-specific productivity, zit, set to be the long-run mean, z̄, across all firms.
Based on the simulated data, we compute the cross-sectional average detrended capital, Kt, and de-
trended consumption Ĉ, as aggregate detrended output minus aggregate detrended investment. We
discard the first 5, 000 periods to ensure that the economy has reached its stationary distribution.

On the remaining 50,000 periods, we pick out the observations when gt = gi for each value of
i ∈ [1, 7], and then fit the following two regressions on these observations:

log Ĉ
(j+1)
t (gt = gi) = a

(j+1)
0i + a

(j+1)
1i logKt + a

(j+1)
2i

(
logKt

)2
+ eCt , (A4)

logK
(j+1)
t+1 (gt = gi) = b

(j+1)
0i + b

(j+1)
1i logKt + b

(j+1)
2i

(
logKt

)2
+ eKt . (A5)

We next check the convergence for the coefficients, for l = {0, 1, 2}:

max
i∈[1,7]

|a
(j+1)
li − a

(j)
li | < 10−2, and max

i∈[1,7]
|b
(j+1)
li − b

(j)
li | < 10−3. (A6)

If not, we update the coefficients as follows:

a
(j+1)
li = a

(j+1)
li ω + a

(j)
li (1− ω), (A7)

b
(j+1)
li = b

(j+1)
li ω + b

(j)
li (1− ω), (A8)

for l = {0, 1, 2}, in which ω is the dampening parameter. In practice, we set ω = 0.8.

The large number of firms, N = 30, 000, is necessary to ensure that the coefficients converge to
an acceptable degree. More important, once the coefficients have converged, we use the simulated
50,000 periods to check the time series R2 from regressing the actual realized values of the average
detrended capital on those values predicted from its approximate law of motion, as well as the R2

from regressing the actual realized values of the aggregate detrended consumption on those values
predicted from its approximate law of motion. In practice, the former R2 is 0.9999983, and the
latter R2 is 0.99494656. Both seem reasonable, and are largely comparable with those reported
in Krusell and Smith (1997, 1998), Favilukis and Lin (2016), and Favilukis, Ludvigson, and Van
Nieuwerburgh (2017).
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