Lecture Notes

Belo, Xue, and Zhang (2013, Review of Financial Studies): A Supply Approach to Valuation

Lu Zhang¹

¹The Ohio State University and NBER

BUSFIN 8250: Advanced Asset Pricing Autumn 2013, Ohio State

Theme

A supply approach to valuation

Cochrane (2011, "Presidential address: Discount rate")

"[W]e have to answer the central question, what is the source of price variation? When did our field stop being 'asset pricing' and become 'asset expected returning'? Why are betas exogenous? A lot of price variation comes from discount-factor news. What sense does it make to 'explain' expected returns by the covariation of expected return shocks with market market return shocks? Market-to-book ratios should be our left-hand variable. the thing we are trying to explain, not a sorting characteristic for expected returns (p. 1063, our emphasis)."

What determines equity valuation? Immensely important

The standard demand approach to valuation:

$$P_{it} = E_t \sum_{\Delta t=1}^{\infty} \frac{D_{it+\Delta t}}{1 + R_{it+\Delta t}} \iff P_{it} = E_t \sum_{\Delta t=1}^{\infty} \frac{Y_{it+\Delta t} - dB_{it+\Delta t}}{1 + R_{it+\Delta t}}$$

Accounting-based valuation, standard b-school curriculum:
 Ohlson (1995), Lundholm and Sloan (2007), Penman (2010)

We explore the supply approach to valuation:

$$P_{it} = Q_{it}K_{it+1} - B_{it+1}$$
 in which $Q_{it} = f\left(\frac{I_{it}}{K_{it}}, \theta\right)$

The supply versus demand approach to valuation

Parsimony:

- Investment-to-capital as the only input
- No need to estimate the discount rate
- No terminal valuation assumptions

Reliability:

 "Structural" parameters are likely more stable than nonstructural parameters

Weakness: Only portfolio-level estimation, firm-level analysis upcoming

Weaknesses with the demand approach

Penman (2010, p. 666):

"Compound the error in beta and the error in the risk premium and you have a considerable problem. The CAPM, even if true, is quite imprecise when applied. Let's be honest with ourselves: No one knows what the market risk premium is. And adopting multifactor pricing models adds more risk premiums and betas to estimate. These models contain a strong element of smoke and mirrors."

Outline

1 The Model

- 2 Econometric Methodology
- 3 Empirical Results
- 4 Summary, Interpretation, and Future Work

Outline

1 The Model

- 2 Econometric Methodology
- 3 Empirical Results
- 4 Summary, Interpretation, and Future Work

The neoclassical investment model

Operating profits, $\Pi(K_{it}, X_{it})$, constant returns to scale

Convex adjustment costs:

$$\Phi(I_{it}, K_{it}) = \frac{1}{\nu} \left(\eta \frac{I_{it}}{K_{it}} \right)^{\nu} K_{it}$$

One-period debt, B_{it+1} , with pretax corporate bond return r_{it+1}^B and after-tax corporate bond return: $r_{it+1}^{Ba} = r_{it+1}^B - (r_{it+1}^B - 1)\tau_{t+1}$

 M_{t+1} : the pricing kernel, correlated with X_{it+1}

Firms maximize the cum-dividend market value of the equity

The valuation equation

$$P_{it} + B_{it+1} = \left[1 + (1 - \tau_t)\eta^{\nu} \left(\frac{I_{it}}{K_{it}}\right)^{\nu-1}\right] K_{it+1}$$

- Pit: ex-dividend market equity
- \blacksquare B_{it+1} : market value of debt
- K_{it+1} : capital

The investment Euler equation

$$\begin{split} 1 + (1 - \tau_{t}) \eta^{\nu} \left(\frac{l_{it}}{K_{it}} \right)^{\nu - 1} &= \\ E_{t} \left[M_{t+1} \left[(1 - \tau_{t+1}) \left[\kappa \frac{Y_{it+1}}{K_{it+1}} + \frac{\nu - 1}{\nu} \left(\eta \frac{l_{it+1}}{K_{it+1}} \right)^{\nu} \right] + \delta_{it+1} \tau_{t+1} \right] \\ &+ (1 - \delta_{it+1}) \left[1 + (1 - \tau_{t+1}) \eta^{\nu} \left(\frac{l_{it+1}}{K_{it+1}} \right)^{\nu - 1} \right] \right] \end{split}$$

The investment return = the WACC:

$$r_{it+1}^I = w_{it}r_{it+1}^{Ba} + (1 - w_{it})r_{it+1}^S$$

Marginal benefits of investment at time t+1

$$\underbrace{\left(1-\tau_{t+1}\right)\left[\kappa\frac{Y_{it+1}}{K_{it+1}}+\frac{\nu-1}{\nu}\left(\eta\frac{I_{it+1}}{K_{it+1}}\right)^{\nu}\right]}_{\text{Marginal product plus economy of scale (net of taxes)}} \\ +\tau_{t+1}\delta_{it+1}+\underbrace{\left(1-\delta_{it+1}\right)\left[1+\left(1-\tau_{t+1}\right)\eta^{\nu}\left(\frac{I_{it+1}}{K_{it+1}}\right)^{\nu-1}\right]}_{\text{Expected continuation value}}$$

$$r_{it+1}^I \equiv$$

$$1+(1- au_t)\eta^
u\left(rac{I_{it}}{ extsf{K}_{it}}
ight)^{
u-1}$$

Marginal costs of investment at time t

Outline

1 The Model

- 2 Econometric Methodology
- 3 Empirical Results
- 4 Summary, Interpretation, and Future Work

Test if the average Tobin's q observed in the data equals the average q predicted in the model:

$$E\left[q_{it} - \left(1 + (1 - \tau_t)\eta^{\nu}\left(\frac{I_{it}}{K_{it}}\right)^{\nu-1}\right)\frac{K_{it+1}}{A_{it}}\right] = 0$$

in which $q_{it} \equiv (P_{it} + B_{it+1})/A_{it}$

Econometric Methodology Comparison with investment regressions

Matching average Tobin's q differs critically from investment regressions:

- Portfolio level estimation mitigates the impact of measurement errors in q
- Average q moments alleviate the impact of temporal misalignment between investment and q
- Flexible adjustment costs allow nonlinear marginal costs of investment

Joint estimation of valuation moments and expected return moments

Test whether the average stock return equals the average levered investment return:

$$E\left[r_{it+1}^S - r_{it+1}^{Iw}\right] = 0$$

in which

$$r_{it+1}^{lw} \equiv \frac{r_{it+1}^{l} - w_{it}r_{it+1}^{Ba}}{1 - w_{it}}$$

Joint estimation of valuation moments and the investment Euler equation moments

$$E\left[\left(\begin{array}{c} 1+(1-\tau_{t})\eta^{\nu}\left(\frac{I_{it}}{K_{it}}\right)^{\nu-1}-\\ \left[\frac{(1-\tau_{t+1})\left[\kappa\frac{Y_{it+1}}{K_{it+1}}+\frac{\nu-1}{\nu}\left(\eta\frac{I_{it+1}}{K_{it+1}}\right)^{\nu}\right]+\delta_{it+1}\tau_{t+1}}{+(1-\delta_{it+1})\left[1+(1-\tau_{t+1})\eta^{\nu}\left(\frac{I_{it+1}}{K_{it+1}}\right)^{\nu-1}\right]}\right]\frac{K_{it+1}}{A_{it}}\right]=0.$$

Tobin's q deciles as testing assets

- \bullet A_{it} : Total assets
- K_{it}: Net property, plant, and equipment
- I_{it}: Capital expenditure minus sales of property, plant, and equipment
- Yit: Sales
- Bit: Long-term debt and short-term debt
- P_{it}: Market value of common equity
- δ_{it} : Depreciation divided by capital
- r_{it+1}^B : Impute bond ratings, assign corporate bond returns of a given rating to all firms with the same rating

Outline

1 The Model

- 2 Econometric Methodology
- 3 Empirical Results
- 4 Summary, Interpretation, and Future Work

Empirical Results Descriptive statistics

	Mean	Low	2	3	4	5	6	7	8	9	High	H-L	[t]
q_{it}													12.11
<u>l_{it} </u> <i>K:</i> ₊													14.70
$\frac{\frac{I_{it}}{K_{it}}}{\frac{K_{it+1}}{A_{it}}}$	0.43	0.30	0.40	0.44	0.46	0.48	0.49	0.49	0.47	0.41	0.40	0.10	3.44

Empirical Results

Parameter estimates and overidentification tests

Panel A: Point estimates and the χ^2 tests											
η	[t]	ν	[t]	$p_{\nu=2}$		Φ/Y	$\overline{ e_i^q }$	χ^2	d.f.	$p_{\chi^{2}}$	_
4.15	18.64	3.75	18.62	0.00		4.78	0.07	7.63	8	0.47	
Panel B: Valuation errors for individual deciles											
	Low	2	3	4	5	6	7	8	9	High	H-L
e_i^q	-0.10	-0.11	-0.06	-0.03	-0.05	-0.03	0.01	-0.05	0.24	-0.05	0.05
[t]	-1.77	-2.18	-1.49	-0.90	-1.20	-0.93	0.23	-0.80	1.83	-1.88	1.21

Empirical Results

Predicted Tobin's q versus realized Tobin's q

Empirical Results

Predicted q versus realized q, Tobin's q deciles within the low and the high terciles split by the Size-age index

Empirical Results

Predicted q versus realized q, Tobin's q deciles within the low and the high terciles split by idiosyncratic volatility

Empirical Results

Predicted q versus realized q, Tobin's q deciles within the low and the high terciles split by cash flows

Empirical Results

Predicted q versus realized q, Tobin's q deciles within the low and the high terciles split by lagged investment

Empirical Results

Predicted q versus realized q, Tobin's q deciles, joint estimation of valuation moments and expected return moments

Empirical Results

Predicted q versus realized q, Tobin's q deciles, joint estimation of valuation moments and investment Euler equation moments

Empirical Results

Predicted q versus realized q, 10 and 20 portfolios formed on Tobin's q, quadratic and nonquadratic adjustment costs

Empirical Results

Predicted q versus realized q, 50 and 100 portfolios formed on Tobin's q, quadratic and nonquadratic adjustment costs

Empirical Results

Tobin's q quintiles, industry-specific estimation

Outline

1 The Model

- 2 Econometric Methodology
- 3 Empirical Results
- 4 Summary, Interpretation, and Future Work

Conclusion

The market value of equity and investment data are well aligned on average at the portfolio level

Interpretation: A supply approach to valuation

Future work: Firm level estimation, nonconvexity, financial frictions, labor, intangible capital...