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Abstract

We examine the properties of equilibrium stock returns in an economy in which agents need
to learn the hidden state of the endowment process. We consider Bayesian and suboptimal
learning rules, including near-rational learning, conservatism, representativeness, optimism, and
pessimism. Bayesian learning produces realistic variation in the conditional equity risk premium,
return volatility, and Sharpe ratio. Alternative learning behaviors alter signi8cantly the level and
variation of the conditional return moments. However, when agents are allowed to be conscious
of their learning mistakes and to price assets accordingly, the properties of returns under Bayesian
and alternative learning rules are virtually indistinguishable.
? 2004 Elsevier B.V. All rights reserved.

JEL classi2cation: G0; G12; G14

Keywords: Time-varying moments or returns; Behavioral biases

1. Introduction

The equity risk premium is time-varying, and understanding why and how it varies
is a lively research 8eld. Intuitively, there are two reasons for the risk premium to
vary in a rational expectations equilibrium (REE) framework: either the compensa-
tion required by agents to take on a marginal unit of risk (the market price of risk)
changes or the amount of risk in the economy changes. It is relatively straightforward
to generate endogenous changes in the market price of risk through changing aggregate
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preferences (induced, for example, by habit formation or heterogeneous agents), but it
is more diCcult to generate endogenous changes in the variance-covariance structure
of a REE model. One mechanism is incomplete information, where agents must learn
about unobservable features of the economy, such as parameters or latent state vari-
ables, from observables. 1 As agents become more or less sure about the true values
of the unobservables, the uncertainty in the economy Euctuates and, as a result, the
risk premium varies.
Relative to time-varying preferences, where the variation in the risk premium is

essentially controlled by the researcher’s modeling of the preferences, the incomplete
information setting is signi8cantly less Eexible. The fact that there is only one way to
learn optimally, namely through Bayesian updating, ties the researcher’s hands. Rather
than being a modeling choice, the learning process, which generates the time-variation
of the risk premium in an economy with incomplete information, is 8xed by the as-
sumption of rational expectations.
Despite being optimal and therefore rational, Bayesian learning is not the only learn-

ing process advocated in the literature. In fact, it has recently become fashionable to
explain empirical irregularities which are diCcult to explain in a fully rational model
through alternative forms of learning motivated by the psychology literature. For exam-
ple, Barberis et al. (1998) and Brav and Heaton (2002) explain over- and under-reaction
of stock prices to news with ‘representativeness’ and ‘conservatism’, where agents place
too much or too little weight on the most recent data relative to Bayesian learning.
Daniel et al. (1998, 2001) and Odean (1998) use ‘overcon8dence’, where agents are
too con8dent in the quality of private information, to explain the same phenomena.
Cecchetti et al. (2000) resolve the equity risk premium puzzle with ‘optimism’ about
the duration of recessions and ‘pessimism’ about the duration of expansions. Finally,
Abel (2002) studies the eJect of pessimism and ‘doubt’ on expected returns.
Since the learning process controls the dynamics of the risk premium in a REE model

with incomplete information (but constant aggregate preferences) and there are a variety
of alternative learning rules advocated in the 8nance literature, it is natural to consider
the eJects of these alternative learning rules on the dynamics of the risk premium.
This is the aim of this paper. We conduct a systematic study of the quantitative eJects
of alternative learning, as opposed to Bayesian learning, on the conditional distribution
of stock returns in an otherwise REE model. The three key features of our approach
are:

• Common economic model. We study a variety of learning rules in the context of
a common economic model. We consider a Lucas (1978) fruit-tree economy with
identical agents that have recursive preferences (Epstein and Zin, 1989, 1991; Weil,
1989) and an exogenous endowment that follows a four-state Markov switching
process. The agents know the structure of the economy and all of its parameters
but cannot observe the current or past states of the economy. The only diJerence
between the versions of this model we consider is the updating rule the agents

1 Incomplete information models include Detemple (1986, 1991), Wang (1993a), Moore and Schaller
(1996), David (1997), Brennan and Xia (1998), and Veronesi (1999, 2000).
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use to incorporate new information into their beliefs about the hidden state of the
economy. 2

• Broad set of learning rules. The alternative learning rules we consider cover a broad
spectrum of the literature on bounded rationality and learning: near-rational learning,
in which the agents update their beliefs about the hidden state using Bayes’ rule but
occasionally make random mistakes; conservatism and representativeness, in which
the agents update their beliefs with too little or too much emphasis on the most
recent data; and optimism and pessimism, in which the agents systematically bias
their beliefs toward or away from the good states. 3

• Distinction between ignorant and conscious agents. We argue that there are two
ways to introduce alternative learning into an otherwise REE model. The 8rst is
to assume that the agents follow a suboptimal learning rule but think that they
learn optimally, which implies that the assets are priced the same way as in the
Bayesian benchmark model except with diJerent state-beliefs. We refer to these
agents as ignorant, since they are unaware of their own limitations. The second
way is to assume that the agents knowingly follow a suboptimal learning rule and
account for this fact in setting the asset prices (eJectively trying to compensate for
or hedge against their learning mistakes). We refer to these agents as conscious
and note that assuming irrational but conscious agents represents a far less severe
breach of full rationality than irrational and ignorant agents. We further argue that
consciousness can be justi8ed from a costs versus bene8ts perspective of correcting
either the learning behavior, which is an on-going eJort, or the asset pricing rule,
which involves only a one-time correction. It may well be optimal and rational for
the agents to be consciously irrational.

Depending on whether one believes in the ideal of full rationality or not (we de-
liberately do not take a stance on this issue here), there are two ways to interpret
the contributions of this paper. From a bounded rationality perspective, we com-
pare a broad range of behavioral learning rules within a common economic model
and study the implications of allowing agents to be conscious. Our results can be
used to assess the equilibrium implications of a given behavioral learning rule or,
from a reverse-engineering perspective, to determine which behavioral learning rule
is best suited for matching the stylized features of the data. From a full-rationality
perspective, we check the robustness of the incomplete information model to de-
viations from Bayesian learning. In that sense, our analysis contributes to the

2 We impose the same learning rule uniformly on all agents, or equivalently on the representative agent,
and hence disregard the interesting issue of how agents with diJerent learning rules and/or heterogeneous
beliefs interact and aggregate. The role of competing learning rules and heterogeneous beliefs is studied
by Brock and Hommes (1997, 1998), Brock and LeBaron (1996), Detemple and Murthy (1994), LeBaron
(2001), and Wang (1993b), among others. A related issue (which we also sidestep) is whether rational
and irrational agents can co-exist in a competitive market. For this research topic, see Bernardo and Welch
(2001), DeLong et al. (1990), Hirshleifer and Luo (2001), and Shleifer and Vishny (1997).

3 See Camerer (1995) and Conlisk (1996) for detailed surveys of this literature.
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extensive literature on the robustness of REE models to deviations from optimal
behavior. 4

Our 8ndings are easy to summarize. Bayesian learning performs reasonably well in
matching the unconditional moments of stock returns and in producing realistic varia-
tion in the conditional equity premium, return volatility, and Sharpe ratio. Alternative
learning of ignorant agents aJects both the level and time-variation of the moments of
stock returns. However, allowing agents to be conscious of their suboptimal learning
behavior eliminates virtually all these diJerences in the return dynamics. This sug-
gests that the bene8ts of considering alternative learning rules depend crucially on the
assumption of ignorance.
The remainder of this paper is structured as follows. In Section 2, we set up the

economic model and describe how asset prices are determined under full and incomplete
information. Section 3 reviews Bayesian learning and formalizes the alternative learning
rules. We present our quantitative results in Section 4 and conclude in Section 5.

2. Economic model

We consider a Lucas (1978) fruit tree economy populated by a large number of
identical and in8nitely lived individuals that can be aggregated into a single represen-
tative agent. The only source of income in the economy is a large number of identical
and in8nitely lived fruit trees. Without loss of generality, we assume that there exists
one tree per individual, so that the amount of fruit produced by a tree in period t, de-
noted Dt , represents the output or dividend per capita. The fruits are non-storable and
cannot be used to increase the number of trees. In equilibrium, all fruits are therefore
consumed during the period in which they are produced, i.e., Ct = Dt , where Ct is
the per-capita consumption in period t. Finally, we assume that each tree has a single
perfectly divisible claim outstanding on it and that this claim can be freely traded at a
price Pt in a competitive equity market.
The dividends are exogenously stochastic. 5 We de8ne dt ≡ lnDt and assume that

the dividend growth rate Ndt ≡ dt −dt−1 follows a Markov mean-switching process: 6

Ndt = �(St−1) + 	
t ; (1)

where 
t is iid standard normal. St follows a 8nite-state Markov chain with transition
matrix {pij}N×N , where N is the number of states and pij is the conditional probability

4 This literature includes Muth (1961), Akerlof and Yellen (1985a, b), Cochrane (1989), Day et al. (1974),
Ingram (1990), Krusell and Smith (1996), Lettau and Uhlig (1999) and Wang (1993b).

5 Timmermann (1994) argues more generally that there may exist a feedback from stock prices to dividends
which can lead to the existence of multiple rational expectations equilibria. Incorporating this feedback eJect
into our incomplete information framework is beyond the scope of this paper.

6 Cecchetti et al. (1990) provide empirical justi8cation for modeling the dividend growth rate as a
mean-switching process. Related models with similar endowment process include Abel (1994), Cecchetti
et al. (1993), and Kandel and Stambaugh (1990, 1991). DriCll and Sola (1998) present evidence that
the volatility of dividend growth is also state-dependent. However, to keep the model simple we keep the
dividend growth volatility constant.
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of the process being in state j next period given that it is in state i this period:

pij = Prob[St+1 = j|St = i] (2)

with pij ∈ [0; 1]. For notational convenience, we let �(i) denote �(St = i).
Following Epstein and Zin (1989) and Weil (1989), we assume that the preferences

of the representative agent are de8ned recursively by

Ut = ((1 − �)C(1−�)=�
t + �(Et[U

1−�
t+1 ])

1=�)�=(1−�); (3)

where �6 1 is the subjective discount factor, �¿ 0 is the coeCcient of relative risk
aversion, and � = (1 − �)=(1 − (1= )) with  ¿ 0 being the elasticity of intertempo-
ral substitution. The 8rst-order condition with Epstein–Zin–Weil preferences can be
expressed as

Et



(
�
(
Ct+1

Ct

)−1= 

Rt+1

)�

= 1; (4)

where Rt+1 ≡ (Pt+1 + Dt+1)=Pt denotes the return on the market portfolio.
If the agents have full information (i.e., know the structure of the economy, its

parameters, and the current state St) we can solve for the equilibrium asset price Pt by
the method of undetermined coeCcients (see Appendix A for details). Speci8cally, the
price-dividend ratio �t and the risk-free rate Rf

t take on only N values, �(i) and Rf (i),
for i=1; 2; : : : ; N . In more realistic economies in which the process St is unobservable
and the agents learn about the current state of the economy, the price-dividend ratio
and risk-free rate are continuous functions. Intuitively, they are convex combinations
of the full-information values.
Consider economies with incomplete information in which the agents know the struc-

ture and parameters of the model but do not observe the state variable St . 7 Formally,
the agents know that Ndt follows the Markov switching process in Eq. (1) with param-
eters �(i) and 	 and with transition probabilities pij. However, the agents must form an
opinion about the probability that the economy is currently in any particular state using
the information 8ltration generated by the observed dividend series Ft={d0; d1; : : : ; dt}
and a set of updating rules for their subjective beliefs (such as Bayes’ rule). The agents’
subjective probability assessment �t ≡ {�t(1); �t(2); : : : ; �t(N − 1)}, where �t(i) ≡
Prob[St = i|Ft], determines the demands for the assets and, through market-clearing,
sets their equilibrium prices.
To price the risky asset, we conjecture a solution of the form Pt = �tDt , where the

price-dividend ratio �t now depends on the subjective state-belief �t as well as on
the observed dividend growth rate Ndt . From the 8rst-order condition in Eq. (4), the
price-dividend ratio satis8es the equation

�(�t;Ndt)� = ��Et

[(
Dt+1

Dt

)�−(�= )

(�(�t+1;Ndt+1) + 1)�
]
: (5)

7 We do not consider learning about the parameters or structure of the model. The role of learning about
parameters, considered by Detemple (1986, 1991), Timmermann (1993, 1996), and Cassano (1999), among
others, is asymptotically degenerate, unless the true model changes periodically.
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Since the agents use Ndt+1 to form the belief �t+1, the two terms in the expectation
are not independent and Eq. (5) generally does not have an analytical solution. 8 We
solve the model numerically using the projection method of Judd (1992) (see Appendix
B for details).

3. Learning

3.1. Bayesian learning

The benchmark case of Bayesian learning works as follows. The agents leave period
t − 1 with the information Ft−1 summarized by the subjective belief �t−1. Once the
dividend Dt is observed, the agents use Bayes’ theorem to update their beliefs to �t .
The updating is simpli8ed by the fact that the current state St has no contemporaneous
eJect on Dt . As a result, the agents use the newly observed data only to update their
beliefs about the state for the previous period, denoted t�t−1(i) ≡ Prob[St−1 = i|Ft],
and then use the transition probabilities pij to form their beliefs �t(i) ≡ Prob[St= i|Ft]
about the current state.
Formally, starting at the end of period t−1 with the subjective and so-called prior be-

lief �t−1, the agent enters period t and observes the new information Dt , or equivalently
Ndt ≡ dt − dt−1. From the mean-switching speci8cation in Eq. (1), the probability
density function of Ndt conditional on the information at time t − 1 is

f(Ndt |St−1 = i;Ft−1) =
1√
2�	

exp
[
− (Ndt − �(i))2

2	2

]
: (6)

We de8ne

�t(i) ≡ f(Ndt |St−1 = i;Ft−1)�t−1(i) (7)

and let t�B
t−1(i) denote the updated belief Prob[St−1 = i|Ft] under Bayesian learning.

The updating is done optimally through Bayes’ rule:

t�B
t−1(i) =

Prob[Ndt |St−1 = i;Ft−1] × Prob[St−1 = i|Ft−1]
Prob[Ndt |Ft−1]

=
�t(i)∑N

j=1 �t(j)
: (8)

Finally, the agents combine the output from the updating step in Eq. (8) with the
transition probabilities pij to form the Bayesian belief �B

t (i) ≡ Prob[St = i|Ft] about
the current state:

�B
t (i) =

N∑
j=1

pji × t�B
t−1(j): (9)

8 In the nested case of Bayesian learning with power utility, the price-dividend ratio is available analyt-
ically. Veronesi (2000) provides the solution in a continuous time model and David and Veronesi (2001)
solve the corresponding discrete time model. Speci8cally, the price-dividend ratio �t is a belief-weighted
average of the �(i) that solve the 8rst-order condition under full information.
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3.2. Alternative learning rules

We now turn to alternative learning behavior, which is suboptimal and in some cases
even biased relative to the optimal Bayesian learning. Consistent with our representative
agent framework, we impose the same suboptimal learning rule uniformly on all agents
or equivalently on the representative agent (see footnote 2).

3.2.1. Near-rational learning
The 8rst suboptimal learning rule we consider is near-rational learning, in which the

agents update their beliefs about the hidden state using Bayes’ rule but occasionally
make mistakes. The mistakes are assumed to be random in such a way that the sub-
jective belief �t is still conditionally unbiased, meaning that the agents do not deviate
from the benchmark case of Bayesian learning on average. Formally, we maintain that

E[�t |Ft] = �B
t : (10)

where �B
t is the Bayesian belief about the state. This unbiasedness property distin-

guishes near-rational learning from the other alternative learning rules which are biased.
We formalize near-rational learning as follows. Once the agents observe the dividend

Dt they update their prior belief �t−1 about the previous state to t�t−1 not through
Bayes’ rule but instead through a weighted average of Bayes’ rule and a random error
term:

t�t−1(i) = (1 − !)t�B
t−1(i) + !�t(i); (11)

where �t(i) denotes a random error with state-dependent distribution, the weight !,
which is assumed to be state-independent, takes a value in [0; 1], and t�B

t−1(i) de-
notes the Bayesian updating process (as opposed to the Bayesian belief) described in
Eq. (8). 9 Given the updated belief about the state in the previous period, the belief
about the current state is again formed using the transition probabilities:

�t(i) =
N∑

j=1

pji × t�t−1(j): (12)

We need to impose more structure on the random noise term �t to guarantee that the
posterior beliefs t�t−1 are valid probabilities and sum to one across states. Speci8cally,
we assume that for a 2xed benchmark state i the error �t(i) follows a Beta distribu-
tion with parameters �t(i) and

∑
j �=i �t(j), where the vector �t is de8ned in Eq. (7).

Moreover, we assume that the errors are perfectly correlated across all states and that
for state j other than the benchmark state i:

�t(j) = (1 − �t(i))
�t(j)∑
j �=i �t(j)

: (13)

9 We distinguish between the Bayesian updating process and Bayesian belief, which is the outcome of the
Bayesian updating process when used in conjunction with the Bayesian belief from the previous period. By
acting on the updating process, an error feeds into all futures periods because the contaminated belief serves
as prior for the next period. If the error acts directly on the belief, its eJects lasts only one period.
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This particular way of distributing the error across the states guarantees that the result-
ing beliefs �t satisfy the unbiasedness condition in Eq. (10). 10 It is also straightforward
to verify that t�t−1 ∈ [0; 1] for all states and that it sums to one across states.

3.2.2. Conservatism and representativeness
Conservatism and representativeness are psychologically motivated alternatives to

Bayesian learning (Edwards, 1968; Kahneman and Tversky, 1972) that have recently
attracted attention in behavioral 8nance. 11 Conservatism leads individuals to place too
much emphasis on old data or the status-quo and too little emphasis on recent data or
the possibility of change. 12 Representativeness refers to the exact opposite behavior,
that individuals tend to think relatively short data sequences are representative of the
underlying distribution.
To formalize conservatism and representativeness, we assume that the agents update

their beliefs �t−1 about the state in the previous period to t�t−1 not through Bayes rule
but instead through the following updating rule:

t�t−1(i) = (1 − !)t�B
t−1(i) + !�t−1(i) (14)

for conservatism and

t�t−1(i) = (1 − !)t�B
t−1(i) + !

f(Ndt |st−1 = i)∑N
j=1 f(Ndt |st−1 = j)

(15)

for representativeness, where ! is a parameter that takes a value in [0; 1].
For conservatism, the updated belief in Eq. (14) is a convex combination of the

Bayesian belief and the prior belief. Since Bayesian updating reEects an optimal weight-
ing of the likelihood of the data Ndt and the prior belief �t−1 [Eqs. (7) and (8)],
conservative agents place more weight on their prior belief and less weight on the data
in the updating process. The parameter ! measures the degree of conservatism. Anal-
ogously, the updated belief in Eq. (15) for representativeness is a convex combination
of the Bayesian belief and the likelihood of the data. Agents that suJer from repre-
sentativeness place less weight on the prior belief and more weight on the data than
Bayesian agents. Note that conservatism and representativeness lead to conditionally
biased state-beliefs.

10 Recall that if y follows a Beta distribution with parameters {�; �}, E[y] = �=(� + �) and Var[y] =
��=((� + � + 1)(� + �)2). It then follows that E[�t(i)|Ft ] = �t(i)=

∑N
i=1 �t(i).

11 See, for example, DeBondt and Thaler (1985), Lakonishok et al. (1994), Barberis et al. (1998) and Brav
and Heaton (2002).
12 Conservatism can also be interpreted as ‘overcon8dence’ in one’s ability to learn. Overcon8dence typ-

ically refers to individuals placing too much weight on their private information relative to the public
information. Although there is no real distinction between public and private information in our model, the
dividend realizations are obviously public while the prior beliefs are arguably private. Conservative agents
place too much weight on their prior belief because they irrationally overrate its accuracy. It therefore appears
that conservative agents are overcon8dent in their ability to learn.
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3.2.3. Optimism and pessimism
Optimistic agents systematically bias their beliefs toward good states and pessimistic

agents tend to think the economy is in bad states. 13 We de8ne good states to be
states with �(i)¿ V�, where V� denotes the unconditional median dividend growth rate,
and bad states to be states with �(i)¡ V�. We order the state index i such that states
with larger indices correspond to higher conditional mean dividend growth rates, which
means that good states correspond to the indices i¿N=2 and bad states to i¡N=2. 14

To capture the notion of optimism, we remove mass of the Bayesian posterior beliefs
from the bad states, in proportion to the conditional probabilities of being in each of the
bad states, and then distribute this mass, again proportionally, across the good states.
Formally, we de8ne the optimistic beliefs as

�t(i) =




(1 − !)�B
t (i) + !

�B
t (i)∑

j¿N=2 �B
t (j)

for i¿
N
2

(good states);

(1 − !)�B
t (i) for i¡

N
2

(bad states);

(16)

where !, which takes a value in [0,1], measures the degree of optimism. For pessimism,
we remove mass from the good states and distribute it proportionally across the bad
states:

�t(i) =




(1 − !)�B
t (i) for i¿

N
2

(good states);

(1 − !)�B
t (i) + !

�B
t (i)∑

j¡N=2 �B
t (j)

for i¡
N
2

(bad states);
(17)

where, in this case, ! measures the degree of pessimism.

3.3. Ignorant versus conscious learning

There are two ways to introduce alternative learning into an otherwise REE model.
The 8rst is to assume that the agents follow a suboptimal learning rule but think that
they learn optimally. We refer to these agents as ignorant because they are unaware
of their limitations. With irrational and ignorant agents the assets are priced by the
same price–dividend ratio �(�t) as with rational agents. Therefore, the only diJerences
between the two versions of the model are the realizations and the evolution of the
state-beliefs. Conditional on the same belief realization �t =�B

t , they are identical. The
second way to introduce alternative is to assume that the agents knowingly follow a
suboptimal learning rule and incorporate this fact into asset prices by using a diJerent

13 On one hand, psychological studies 8nd that people tend to be optimistic about their future prospects
(Weinstein, 1980; Kunda, 1987) and that, perhaps somewhat counter-intuitively, optimism is more pro-
nounced among more intelligent people (Klaczynski and Fauth, 1996). On the other hand, Cecchetti et al.
(2000) and Abel (2002) show that pessimistic behavior can help explain the equity premium and risk-free
rate puzzles, respectively.
14 The classi8cation of states according to the median growth rate is notationally convenient. Alternatively,

we could use the mean growth rate, but the two approaches are equivalent for our quantitative results.
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price–dividend ratio function to compensate for or hedge against their learning mistakes.
We refer to these agents as conscious.
To intuitively understand how irrational but conscious agents can partially correct

their learning mistakes through the price-dividend ratio function, consider an economy
with two states St={0; 1} and a pessimistic agent with state-beliefs that are uncondition-
ally biased E[�t] = 0:9E[�B

t ]. Furthermore, assume that the price-dividend ratio for the
Bayesian agents is �B(�t)=100+50�B

t . In this example, irrational and ignorant agents
underprice the asset (relative to the dividends) by an average of E[�t]−E[�Bt ]=−5E[�B

t ].
Irrational but conscious agents, in contrast, recognize that with their particular learn-
ing mistakes a price-dividend ratio of �(�t) = 100 + 55:66�t results in unconditionally
unbiased valuations. However, unless the belief of the irrational agents is proportional
to that of the rational agents in all states, which is not the case with the alternative
learning rules described above, conscious agents cannot fully correct their mistakes
through the price-dividend ratio. Intuitively, they can only compensate for systematic
biases through their own price-dividend ratio function. 15

Technically, conscious agents solve for the function �(�t;Ndt+1) that satis8es the
8rst-order condition in Eq. (5) when the conditional expectations are taken with re-
spect to the dynamics of their suboptimal state-beliefs. Ignorant agents, in contrast, use
the price-dividend ratio function of the Bayesian agents, which solves the 8rst-order
condition when the conditional expectations are taken with respect to the dynamics of
the Bayesian beliefs.
Perhaps the most intuitive reason for considering conscious agents is internal consis-

tency. Since the agents in our model are in8nitely lived, it is diCcult to imagine that
they employ a set of learning and pricing rules that consistently misprices the asset
relative to the historical dividend realizations. At the same time, psychologists argue
convincingly that it is diCcult for naturally pessimistic individuals, for example, not
to be pessimistic in their probability assessment. One can interpret conscious agents as
adjusting their pricing rule to be at least partially consistent with the data.
One way to justify why conscious agents adjust their pricing rule to be internally

consistent rather than correct their learning behavior, is from a costs versus bene8ts
perspective. As Simon (1955), Marschak (1968), and Einhorn (1970, 1971) suggest,
computational costs are an important consideration in deciding whether to act rationally
or according to a behavioral heuristic (see also Payne et al., 1990). It is arguably less
costly for agents to adjust their pricing rule once than to correct and monitor each
period (for an in8nite number of periods) their natural tendency to be pessimistic. As
long as the expected utility loss from being irrational but conscious does not exceed
the costs of not being pessimistic, it can therefore be optimal (and rational) to be
irrational but conscious.

15 This intuition is not quite correct due to the non-linearities in the 8rst-order condition (5). Unless �=1
(power utility), conscious agents may also be able to partially correct for too much or too little variation in
their state-belief. The price-dividend ratio can also be diJerent due to a correlation between dividend growth
realizations and the learning errors, which generates positive or negative hedging demands for the asset (e.g.,
Merton, 1969). However, the 8rst-order corrections are for systematic biases in the belief.
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4. Quantitative results

4.1. Calibration

We estimate the parameters of the mean-switching process in Eq. (1) by maximum
likelihood using quarterly real dividends paid on the Standard and Poors Composite
Index from January 1871 to December 1998 (512 observations). We use a four-state
regime-switching model for the dividend growth rate. The parameter estimates are
reported in Table 1.
All four states are quite persistent, with continuation probabilities (the diagonal pii)

ranging from 0.64 to 0.84. The extreme states (states one and four) are less persistent
than the moderate states (states two and three). The 8rst two states are contraction states
with negative average dividend growth rates and the last two states are expansion states
with positive mean dividend growth rates. The conditional volatility of dividend growth
is 1.9% per quarter, which together with the variation in the conditional mean growth
rate, translates into an unconditional volatility of 6.8% per year.
To get a sense for how diCcult it is to learn about the latent state, we plot in Fig. 1

the conditional dividend growth densities scaled by the unconditional state probabilities.
We also plot the implied unconditional density, which is the sum of the four scaled
conditional densities. Intuitively, the more the conditional densities overlap, the harder
it is to determine the state of the economy from a dividend growth realization. For
example, if a dividend growth is realized from the 8rst state, it is immediately clear
that the economy is not in the third or fourth state. However, there could be some
uncertainty about whether the economy is in states one or two. It is therefore relatively
easy to learn about state one. In contrast, the conditional densities of states two and
three overlap substantially, which means that these two states are very diCcult to
distinguish and learn about.

Table 1
Maximum likelihood estimates of the endowment process

i = 1 i = 2 i = 3 i = 4 �i 	

Conditional probabilities and moments
j = 1 0.636 0.046 0.006 0.000 −0.073 0.019
j = 2 0.327 0.844 0.153 0.065 −0.005
j = 3 0.038 0.087 0.841 0.164 0.020
j = 4 0.000 0.023 0.001 0.771 0.069

Unconditional probabilities and moments
0.072 0.519 0.356 0.053 0.003 0.034

This table presents maximum likelihood estimates of the log dividend growth rate process:

Ndt = �(St−1 = i) + 	
t ;

where 
t is iid N[0; 1] and St follows a four-state Markov switching process with transition probabilities
{pij}4×4 of St = j given St−1 = i. The data are quarterly dividend growth rates for the Standard and Poors
Composite Index from January 1871 to December 1999 (512 observations).
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Fig. 1. Probability densities of dividend growth. This 8gure plots the four conditional probability densities
weighted by the corresponding unconditional state probabilities (solid lines) and the unconditional probability
density (dashed line) of the Markov mean-switching dividend growth rate process.

We need to specify the preference parameters to price assets with this endowment
process. Rather than present results for a variety of diJerent parameter values, we
focus on a single choice which produces reasonable return dynamics under Bayesian
learning. However, our 8ndings, especially the results on alternative learning and on
the role of ignorance versus consciousness, are qualitatively the same for various other
sensible parameter con8gurations. (These results are available on request.) We choose
a relative risk aversion of � = 4, an elasticity of intertemporal substitution of  = 2,
and a time-preference coeCcient of �= 0:99. The choice of � and � is fairly standard
and, as we will demonstrate below, generates realistic levels of the equity premium
and risk-free rate under Bayesian learning. We choose an elasticity of intertemporal
substitution that exceeds one, which is unusual (recall that with power utility  =1=�),
to match the stylized fact that stock prices are high relative to dividends in expansions
and low in recessions. 16

Given the estimates in Table 1 and these preference parameters, we can solve for
the full-information price-dividend ratios, which correspond to the extreme beliefs �t =

16 The reciprocal of the price-dividend ratio, the dividend yield, is counter-cyclical. See, for example,
Fama and French (1989). Bansal and Yaron (2003) use  = {2:5; 4} for the same reason. As Cecchetti
et al. (1990) explain, the cyclicality of the price-dividend ratio depends on the relative importance of two
oJsetting eJects: an intertemporal relative price eJect and a substitution eJect. The intertemporal relative
price eJect is that the agents try to buy the stock to save for future consumption at high endowments
(since the states are persistent) and low relative prices. The intertemporal substitution eJect is that agents
try to sell the stock to increase their current consumption in anticipation of future high endowments. When
the elasticity of intertemporal substitution is less than one, the intertemporal substitution eJect dominates,
and the price-dividend ratio is counter-cyclical. When the elasticity of intertemporal substitution is greater
than one, the relative price eJect dominates, and the price-dividend ratio is cyclical (as in the data). When
� =  = 1 (log utility) the two eJects exactly cancel and the price-dividend ratio is constant.
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{[1 0 0 0]; [0 1 0 0]; [0 0 1 0]; [0 0 0 1]}. The results are �t={40:65; 45:15; 47:54; 52:12}. As
expected (from our discussion above), the price-dividend ratios increase monotonically
with the mean dividend growth rate. Furthermore, the ratios for states two and three
are much closer to each other [�(3)− �(2)=2:39] than for states one and two [�(2)−
�(1) = 4:50] and for states three and four [�(4) − �(3) = 4:58], which means that
the stock price Euctuates more when the economy moves between a moderate and an
extreme state than when it moves between the two moderate states. This pattern in the
price-dividend ratios turns out to be quite important for understanding the results in
Section 4.5.
Finally, we need to calibrate the tuning parameter ! in the alternative learning rules.

For near-rational learning, we choose ! in Eq. (11) to 8x the conditional standard
deviation of the mode of the state-distribution (�t(2) in our case) around the cor-
responding Bayesian belief to be 0.025, 0.050, or 0.075 (recall that the errors are
perfectly correlated across states). 17 In the case of conservatism and representative-
ness, the tuning parameter ! in Eqs. (14) and (15) can be interpreted as the relative
deviation of the learning rule from Bayesian learning. We report results for != 0:05,
0:10, and 0:15. For optimism and pessimism, we calibrate ! in Eqs. (16) and (17)
such that the unconditional bias of the belief that the economy is in a good state
E[�t(3) + �t(4)] − E[�B

t (3) + �B
t (4)] equals 0.01, 0.025, and 0.05 for optimism and

−0:01; −0:025, and −0:05 for pessimism.

4.2. Research methodology

Given the calibrated model and the preference parameters, we numerically solve
for the price-dividend ratio function �(�t). We then evaluate the unconditional and
conditional moments of returns as follows:

1. We simulate 1000 time-series of 532 quarters of the latent state variable, where
we initialize each time-series with the unconditional state probabilities. We then
simulate a dividend growth realization from every state.

2. For each learning rule, we construct 1000 sequences of state beliefs by applying the
corresponding updating steps to the dividend growth rate series from step 1.

3. To evaluate the unconditional moments of returns for a given learning rule, we
generate 1000 × 1024 returns using the factorization:

Rt+1 =
�(�t+1) + 1

�(�t)
Dt+1

Dt
; (18)

where the price-dividend ratios are evaluated at the state beliefs from step 2 and
the dividend growth rates come from step 1. We drop the 8rst 512 quarters in each
series as a burn-in (resulting in 512 quarters, which matches our sample) and then
evaluate the unconditional moments with their sample analogs for these 1000× 512
returns.

4. To evaluate the conditional moments for a given learning rule and a given state belief
�t from step 2, we simulate 5000 one-period ahead returns using steps analogous

17 Fixing the standard deviation of the belief for the other states produces qualitatively similar results.
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to steps 1–3, except that the states are initialized with the state probabilities �t .
We then evaluate the conditional moments with their sample analogs for these 5000
returns.

For ignorant agents we compute the returns by evaluating in step 3 the price-dividend
ratio function of the Bayesian agents at the distorted beliefs, as ignorant agents think
they act optimally and hence use the pricing rule of optimally acting (i.e., Bayesian)
agents. For conscious agents, in contrast, we solve for a separate price-dividend ratio
function for each learning rule. These alternative pricing rules satisfy the 8rst-order
conditions in Eq. (5) when the expectations are evaluated with the dynamics of the
alternative state beliefs. In that sense, the agents are conscious of the fact that their
learning is not optimal.

4.3. State-beliefs

Table 2 reports the across simulation averages and standard deviations of the con-
ditional beliefs for the four states �t and for bad states �t(1) + �t(2). 18 The table
also describes the price-dividend ratios �(�t) (assuming ignorant agents). The 8rst
row shows the statistics for Bayesian learning. The average beliefs match closely the
unconditional probabilities of the four states from Table 1. All four beliefs exhibit
considerable variability, ranging from 14.5% for state one to 25.3% for state three,
which means that agents form conditional beliefs that are at times very diJerent from
their unconditional counterparts. This is because the realized dividend growth rates are
quite informative about the state.
Rows 2–4 describe the beliefs for near rational learning. The averages are close to

those for Bayesian learning, except for a slight shift of probability mass from state
three to state two (the mode of the distribution). Intuitively, the learning errors oJset
the information contained in the data and pull the beliefs toward the unconditionally
most likely state. 19 Increasing the standard deviation of the learning errors raises the
variability of the beliefs, with the beliefs for the moderate states becoming proportion-
ally more variable. The price-dividend ratios are unaJected on average but become, as
expected, more variable as the standard deviation of the learning errors increases.
Conservatism (in rows 5–7) leads to beliefs that are approximately unbiased and

become less variable as the degree of conservatism increases. By overweighing their
prior beliefs the agents learn more slowly (hence lower variability) but ultimately come
to the same conclusions as with Bayesian learning (hence unbiasedness). The variability
of the price-dividend ratios also decreases as the degree of conservatism increases.
Although representativeness (in rows 8–10) is theoretically the opposite of conser-

vatism, its eJects on the beliefs are not symmetric. Representativeness shifts probability
mass from the mode of the state distribution, the most likely second state, to the other
states, particularly the extreme ones. Just like conservatism, it thereby reduces the

18 The average belief for good states �t(3) + �t(4) is one minus the average for bad states shown in the
table. The standard deviations of the beliefs for good and bad states are therefore the same.
19 This pattern is independent of whether we calibrate the near-rational learning rule to state two or three.
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Table 2
Conditional beliefs and price-dividend ratios

�t(1) �t(2) �t(3) �t(4) �t(1) + �t(2) �(�t)

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

Bayesian 0.073 0.150 0.520 0.247 0.354 0.252 0.053 0.153 0.593 0.279 45.86 1.55

Near rational
	[�] = 2:5% 0.073 0.150 0.521 0.253 0.353 0.259 0.053 0.153 0.594 0.284 45.86 1.56
	[�] = 5:0% 0.073 0.152 0.522 0.270 0.350 0.277 0.054 0.154 0.595 0.301 45.86 1.58
	[�] = 7:5% 0.073 0.153 0.526 0.295 0.345 0.302 0.054 0.155 0.598 0.324 45.82 1.59

Conservatism
! = 5% 0.073 0.146 0.520 0.239 0.354 0.244 0.053 0.150 0.592 0.271 45.85 1.51
! = 10% 0.073 0.141 0.519 0.231 0.355 0.236 0.054 0.146 0.592 0.264 45.85 1.48
! = 15% 0.073 0.136 0.519 0.222 0.355 0.228 0.054 0.142 0.592 0.256 45.84 1.44

Representativeness
! = 5% 0.073 0.151 0.515 0.242 0.356 0.245 0.056 0.153 0.588 0.275 45.87 1.55
! = 10% 0.074 0.151 0.510 0.237 0.358 0.239 0.058 0.154 0.584 0.273 45.89 1.56
! = 15% 0.074 0.151 0.506 0.233 0.360 0.234 0.060 0.155 0.580 0.270 45.90 1.57

Optimism
Bias = 1:0% 0.071 0.148 0.502 0.240 0.374 0.250 0.053 0.153 0.573 0.273 45.91 1.53
Bias = 2:5% 0.068 0.144 0.476 0.231 0.402 0.246 0.053 0.152 0.545 0.265 45.98 1.51
Bias = 5:0% 0.060 0.132 0.402 0.201 0.485 0.232 0.052 0.151 0.462 0.238 46.20 1.44

Pessimism
Bias = 1:0% 0.074 0.150 0.538 0.240 0.335 0.241 0.053 0.150 0.612 0.269 45.80 1.51
Bias = 2:5% 0.075 0.150 0.564 0.230 0.310 0.225 0.051 0.144 0.639 0.255 45.73 1.46
Bias = 5:0% 0.079 0.150 0.637 0.202 0.236 0.176 0.046 0.126 0.717 0.212 45.50 1.31

This table describes the conditional state-beliefs �t and the price-dividend ratios �(�t) for diJerent learning
rules. We simulate 1000 samples of 512 quarterly observations of the state-beliefs. We then report the across
simulations averages and standard deviations of the conditional beliefs and price-dividend ratios.

variability of the moderate state-beliefs, but, unlike conservatism, it raises the vari-
ability of the extreme state-beliefs. The reason for this asymmetry is that, while the
agents can slow down the process of Bayesian learning (through conservatism), they
cannot speed it up because Bayesian learning already incorporates new information as
fast and eCciently as possible. As a result, the beliefs with representativeness tend to
‘overshoot’ the moderate states and settle on the less likely extreme states. This leads
to price-dividend ratios that increase in both average magnitude and variability as the
degree of representativeness increases.
Optimism (in rows 11–13) and pessimism (in rows 14–16) aJect the beliefs sym-

metrically. Optimism shifts probability mass from the bad states to the good ones,
particularly to the third state, and pessimism shifts mass from the good states to the
bad ones, particularly to the second state. As the degree of optimism (pessimism) in-
creases, optimism (pessimism) thereby generates higher (lower) price-dividend ratios on
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Table 3
Unconditional moments

Ignorant learning Conscious learning

rt+1 rft rt+1 rft

Avg Std Avg Std Avg Std Avg Std

Data 11.04 18.18 4.88 2.80 11.04 18.18 4.88 2.80
Bayesian 9.79 10.02 2.18 2.77 9.79 10.02 2.18 2.77

Near rational Near rational
	[�] = 2:5% 9.79 10.05 2.26 2.80 9.79 9.79 1.98 2.97
	[�] = 7:5% 9.79 10.24 2.74 3.04 9.79 9.85 1.57 2.56

Conservatism Conservatism
! = 5% 9.79 9.88 1.89 2.68 9.79 9.95 2.07 3.02
! = 15% 9.79 9.59 1.35 2.49 9.79 10.16 2.13 2.96

Representativeness Representativeness
! = 5% 9.79 10.12 2.15 2.78 9.79 10.05 2.09 3.00
! = 15% 9.78 10.32 2.11 2.81 9.79 10.16 2.13 2.96

Optimism Optimism
Bias = 1:0% 9.78 10.00 2.39 2.82 9.79 10.01 2.07 3.10
Bias = 5:0% 9.72 9.83 4.08 2.73 9.79 10.09 2.15 2.91

Pessimism Pessimism
Bias = 1:0% 9.80 9.97 1.82 2.60 9.79 10.02 2.06 3.03
Bias = 5:0% 9.85 9.60 0.29 1.90 9.79 10.12 2.05 3.03

This table describes the unconditional moments of stock and bond returns in the data and implied by the
model for diJerent learning rules and with ignorant and conscious agents (except for Bayesian learning). We
simulate 1000 samples of 512 quarterly stock and bond returns and report the overall averages and standard
deviations of the continuously compounded stock returns rt+1 = ln Rt+1 and bond returns rft = ln Rf

t .

average. Both learning behaviors reduce the variability of the beliefs and the price-
dividend ratios because it requires a more informative dividend growth realization to
overwrite the optimistic or pessimistic bias.

4.4. Unconditional moments

We now turn to the unconditional moments of the resulting equilibrium stock returns.
The left-hand panel of Table 3 reports the unconditional moments of stock and bond
returns in the historical data and implied by the model for Bayesian learning and
alternative learning with ignorant agents. The second row shows that with Bayesian
learning our model is able to generate reasonable levels of the equity premium and
riskfree rate, 7.6% and 2.2% per year, respectively. 20 The volatility of interest rates is

20 However, we note that none of the models solves the equity premium puzzle. The reason is that we use
dividend growth, as opposed to consumption growth, to be the exogenous driving process.
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a low 2.8% per year, but the volatility of stock returns is too low at only 10% per year,
as opposed to 18% in the historical data. This means that with the parameters estimated
from the dividend data, the model cannot fully overcome the ‘excess volatility’ puzzle
documented by Grossman and Shiller (1981), among others.
Since near rational learning introduces idiosyncratic noise to the beliefs, it increases

the volatility of stock returns. As the stock returns become more volatile, so does the
pricing kernel [see Eq. (A.4)] and, as a results, the average risk-free rate increases
from 2.2% for Bayesian learning to 2.7% with 	(�t)=0:075. The average stock return
is unchanged, so that the equity risk premium drops from 7.6% to 7.1%.
The eJects of conservatism and representativeness on the volatility of stock returns

are intuitive. With increasing conservatism, the state-beliefs become less responsive
to the dividends and hence less volatile, causing the stock returns to also become
less volatile. With increasing representativeness, in contrast, the beliefs become more
(excessively) sensitive to the dividends, which results in a higher volatility of stock
returns.
Optimistic agents systematically over-estimate the probability of being in good states.

For them not to short-sell the bond to buy more stock (recall that with  ¿ 1 the agents
want to buy stock in good states to save for future consumption at high endowments
and low relative prices), the riskfree rate increases with the degree of optimism. This
causes the equity risk premium to drop. The eJect of pessimism is exactly the opposite.
Pessimistic agents under-estimate the probability of being in bad states and want to
shift wealth from stocks to bonds. The riskfree rate therefore decreases and the equity
risk premium increases. 21 The volatility of stock returns decreases slightly with both
optimism and pessimism, reEecting the fact that the beliefs become less volatile.
We now compare the proceeding results for ignorant agents with those for conscious

agents in order to gauge the importance of implicitly assuming ignorance. The right
panel of Table 3 reports the unconditional moments under conscious learning. We
focus on conservatism, representativeness, optimism, and pessimism, as these rules
have received much attention in the literature. The results are striking. Under conscious
learning, the average stock return remains the same as that in Bayesian benchmark
case, and the diJerences in the average riskfree rate are much less pronounced as with
ignorant learning.

4.5. Conditional moments of returns

4.5.1. Equity risk premium, conditional volatility, and Sharpe ratio
Turning to the core of our inquiry, the eJects of alternative learning on the condi-

tional moments of returns, we 8rst present the results for Bayesian learning and then
discuss the diJerences induced by alternative learning relative to this benchmark. The
right panel of Table 4 describes the conditional moments of stock returns in the data
and implied by the model. The historical estimates are obtained using the approach of
Brandt and Kang (2003). For the model, we report the across time and simulations

21 This result is consistent with Abel (2002) and Cecchetti et al. (2000) who show that moderate degrees
of pessimism go a long way towards resolving the equity risk premium and riskfree rate puzzles.
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Table 4
Conditional moments

Ignorant learning Conscious learning

Et [ret+1] 	t [ret+1] Et [ret+1]=	t [ret+1] Et [ret+1] 	t [ret+1] Et [ret+1]=	t [ret+1]

Avg Std Avg Std Avg Std "1 "4 Avg Std Avg Std Avg Std "1 "4

Data 7.27 1.93 12.55 3.06 0.64 0.18 0.70 0.23 7.27 1.93 12.55 3.06 0.64 0.18 0.70 0.23
Bayesian 7.60 2.70 9.67 1.97 0.77 0.21 0.63 0.25 7.60 2.70 9.67 1.97 0.77 0.21 0.63 0.25

Near rational Near rational
	[�] = 2:5% 7.52 2.96 9.71 1.95 0.76 0.25 0.65 0.25 7.81 3.15 9.58 2.10 0.81 0.29 0.66 0.25
	[�] = 7:5% 7.05 4.98 9.93 1.85 0.68 0.51 0.55 0.17 8.22 3.09 9.46 2.18 0.87 0.32 0.35 0.10

Conservatism Conservatism
! = 5% 7.90 2.60 9.51 1.92 0.82 0.20 0.57 0.21 7.72 3.14 9.55 2.09 0.80 0.29 0.68 0.27
! = 15% 8.44 2.78 9.18 1.80 0.92 0.23 0.33 0.08 7.66 3.31 9.69 2.16 0.78 0.27 0.57 0.19

Representativeness Representativeness
! = 5% 7.63 2.91 9.80 1.93 0.76 0.23 0.55 0.21 7.70 3.22 9.68 2.05 0.78 0.29 0.66 0.25
! = 15% 7.67 3.44 10.02 1.87 0.75 0.29 0.38 0.13 7.66 3.31 9.82 2.01 0.77 0.29 0.59 0.21

Optimism Optimism
Bias = 1:0% 7.39 2.82 9.65 1.99 0.75 0.21 0.63 0.25 7.72 3.22 9.62 2.09 0.79 0.29 0.67 0.26
Bias = 5:0% 5.64 2.87 9.43 2.07 0.57 0.21 0.52 0.19 7.64 3.31 9.69 2.16 0.78 0.27 0.57 0.19

Pessimism Pessimism
Bias = 1:0% 7.98 2.47 9.62 1.96 0.82 0.18 0.57 0.20 7.73 3.27 9.63 2.07 0.79 0.30 0.68 0.26
Bias = 5:0% 9.56 2.21 9.22 1.90 1.04 0.17 0.41 0.10 7.74 3.57 9.76 2.05 0.78 0.36 0.62 0.20

This table describes the conditional moments of stock and bond returns in the data and implied by the
model for diJerent learning rules and with ignorant and conscious agents (except for Bayesian learning).
We simulate for each of the 1000 × 512 state-beliefs 5000 one-period ahead stock and bond returns and
compute the conditional risk premium and volatility of stock returns. We then report the across imulations
averages and standard deviations of the conditional risk premium, return volatility, and Sharpe ratio. For the
Sharpe ratio, we also report the across simulations averages and standard deviations of the quarterly and
annual autocorrelations.

averages and standard deviations of the conditional risk premium, conditional volatility,
and conditional Sharpe ratio. We also report the across simulations average 8rst and
fourth autocorrelations of the Sharpe ratio.
Consider 8rst the results for Bayesian learning in the second row. The standard

deviation of the conditional equity risk premium is 2.70%, which means that the risk
premium varies considerably through time. The average conditional volatility of returns
is 9.67%, somewhat lower than the unconditional volatility due to the variation of the
risk premium, with a standard deviation of 1.97%. 22 Together, the conditional moments
imply a Sharpe ratio of 0.77 on average with a standard deviation of 0.21. Despite its
variability, the Sharpe ratio is quite persistent, with a quarterly autocorrelation of 0.63

22 Recall that Var[x] = E[Vart [x]] + Var[Et [x]].
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and an annual autocorrelation of 0.25. Finally, notice that all of these quantities match
reasonably well their empirical counterparts.
Near rational learning has some eJect on the variation of the conditional risk pre-

mium and Sharpe ratio. The standard deviation of the risk premium rises, the standard
deviation of the Sharpe ratio more than doubles, and the persistence of the Sharpe ratio
drops signi8cantly.
With conservatism, the beliefs adjust more sluggishly to new dividend realizations.

This causes the conditional risk premium to increase (because the riskless rate decreases
as the pricing kernel becomes less volatile) and the conditional return volatility to
decrease on average. The average Sharpe ratio therefore rises sharply. Furthermore,
conservatism not only causes the conditional moments to become less variable, since the
beliefs vary less, but also weakens the link between the conditional moments. This can
be seen as the persistence of the Sharpe ratio drops from a 8rst-order autocorrelation of
0.57 to 0.33, suggesting that the risk premium and volatility vary more independently.
As we explained in Section 4.3, representativeness causes the beliefs to overshoot

the moderate states and settle on the less likely extreme states. This has the expected
eJect of increasing the conditional and unconditional volatility of returns. It also has
the somewhat puzzling eJect, when compared to the results for near rational learning,
of increasing the conditional and unconditional risk premium. The reason is that with
representativeness, the beliefs visit more often extreme regions in the state-space, in
which the risk premium is signi8cantly higher as compensation for an increased return
volatility. The average risk premium therefore increases, while the average Sharpe ratio
is almost unchanged. Since part of the risk premium in the extreme states is compen-
sation for a high or low consumption beta, the conditional risk premiums Euctuates
more than the conditional return volatility. As a result, the conditional Sharpe ratio
becomes a little more volatile.
The results for optimism and pessimism are much more straightforward. With opti-

mism (pessimism) the average conditional risk premium decreases (increases) because
of the counter-cyclical variation of the covariance of returns with consumption growth.
Optimistic agents inEate the probability of being in low consumption beta states (states
with a relatively low risk premium) and the opposite for pessimistic agents. In both
cases, the average conditional return volatility decreases because the state-beliefs be-
come less variable (it takes a more informative dividend realization to overwrite the
learning bias). As a result, the average Sharpe ratio drops with optimism and rises
with pessimism.
To compare these results for ignorant agents with those for conscious agents, the

right panel of Table 4 describes the conditional return moments for conscious agents.
The results are again striking. In all cases, the eJects of alternative learning on the
level of the equity risk premium documented in the left panel of the same table disap-
pear when we allow the agents to be conscious. Consider, for example, conservatism.
With ignorant agents the average risk premium rises from 7.60% to 8.44%, but with
conscious agents it rises only marginally to 7.66%. Similarly for pessimism, with con-
scious agents the average risk premium rises to only 7.74% instead of 9.56%. Note
that consciousness causes the risk premium to become somewhat more variable. This
is most apparent for pessimism, where with ignorant agents the standard deviation of
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the conditional risk premium drops from 2.70% to 2.21%, but with conscious agents
it rises to 3.57%.
The eJects of consciousness on the conditional volatility of returns are similar but

less extreme. For example, in the case of conservatism the average conditional volatility
drops from 9.67% to 9.18% assuming ignorance but rises slightly to 9.69% allowing
for consciousness. In the case of pessimism, the average conditional volatility drops to
9.22% with ignorance but actually increases slightly to 9.76% with consciousness. As
with the conditional risk premium, consciousness causes the volatility to be somewhat
more variable.
Combining the results for the conditional risk premium and volatility, the level of the

Sharpe ratio is hardly aJected by alternative learning with conscious agents. However,
since both conditional moments become more variable, the Sharpe ratio also becomes
somewhat less persistent and more variables.
The conclusion from these results is obvious. Allowing agents to be conscious of

their learning limitations and to price assets optimally with respect to their suboptimal
beliefs changes dramatically the role of alternative learning. A more general implica-
tion of our results is that behavioral models which use suboptimal learning rules to
explain certain return anomalies may well be relying more on the implicit assumption
of ignorance than on the particular form of the suboptimal learning rule.

4.5.2. Predictive regressions
It is common in the literature to capture variation in the conditional equity risk

premium through predictive regressions. Perhaps the most popular regressor is the
dividend-price ratio (e.g., Campbell and Shiller, 1988; Fama and French, 1988). To
examine the extent to which our model captures return predictability by the dividend
yield and, more importantly, the extent to which alternative learning aJects this pre-
dictability, we compute predictive regressions for each simulated return series. Table
5 presents the across simulations averages and standard deviations of the slope coef-
8cients for regressions of (continuously compounded) one-, three-, 8ve, and ten-year
excess returns on the log dividend yield. The table also reports the average R2 of the
predictive regressions.
Bayesian learning generates a realistic level of predictability. As in the data, the

average R2 increases initially with the return horizon, to almost 4% for 3-year returns,
and then decreases at longer horizons. The slope coeCcients increase monotonically
with the horizon. Judging by the t-statistics (not reported to preserve space), the slope
coeCcients are statistically signi8cant on average, but the average coeCcients are in
all cases less than 1.5 sampling standard deviations from zero.
Comparing the results across the rows in Table 5 illustrate clearly again that (i)

suboptimal learning with ignorant agents alters the return properties from the Bayesian
benchmark; and then (ii) these eJects are largely eliminated by consciousness. Without
going into details of every suboptimal learning rule, we focus our discussion here on
pessimism, which is intriguing in light of the recent interest in this alternative learn-
ing rule for explaining the equity premium and riskless rate puzzles (e.g., Abel, 2002;
Cecchetti et al., 2000). The results in Tables 3 and 4 verify that pessimism raises the
unconditional and average conditional risk premium and, at the same time, lowers the
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Table 5
Long-horizon predictive regressions

1 Year 3 Years 5 Years 10 Years

Avg Std VR2 Avg Std VR2 Avg Std VR2 Avg Std VR2

Ignorant learning
Data 0.10 na 0.023 0.32 na 0.061 0.64 na 0.091 1.16 na 0.135
Bayesian 0.41 0.29 0.030 0.66 0.47 0.037 0.72 0.57 0.034 0.82 0.77 0.032

Near rational
	[�] = 2:5% 0.43 0.29 0.032 0.68 0.48 0.038 0.74 0.57 0.035 0.84 0.77 0.032
	[�] = 7:5% 0.57 0.29 0.049 0.80 0.47 0.047 0.85 0.57 0.040 0.94 0.78 0.035

Conservatism
! = 5% 0.40 0.30 0.027 0.66 0.50 0.036 0.72 0.60 0.033 0.83 0.80 0.031
! = 15% 0.33 0.32 0.021 0.62 0.54 0.030 0.69 0.66 0.029 0.81 0.89 0.029

Representativeness
! = 5% 0.41 0.28 0.030 0.63 0.48 0.035 0.69 0.57 0.033 0.79 0.76 0.031
! = 15% 0.41 0.28 0.030 0.59 0.46 0.033 0.64 0.55 0.030 0.74 0.75 0.028

Optimism
Bias = 1:0% 0.43 0.29 0.031 0.67 0.47 0.038 0.73 0.57 0.035 0.83 0.76 0.032
Bias = 5:0% 0.34 0.30 0.022 0.49 0.51 0.025 0.54 0.62 0.023 0.66 0.84 0.023

Pessimism
Bias = 1:0% 0.33 0.29 0.022 0.53 0.50 0.027 0.59 0.61 0.026 0.70 0.82 0.026
Bias = 5:0% −0.07 0.34 0.011 −0.09 0.64 0.012 −0.04 0.81 0.012 0.12 1.13 0.012

Conscious learning
Near rational

	[�] = 2:5% 0.50 0.28 0.039 0.78 0.46 0.047 0.84 0.55 0.042 0.93 0.73 0.038
	[�] = 7:5% 0.37 0.28 0.023 0.50 0.48 0.022 0.54 0.60 0.020 0.64 0.87 0.020

Conservatism
! = 5% 0.53 0.28 0.044 0.86 0.46 0.056 0.92 0.54 0.050 1.01 0.71 0.044
! = 15% 0.56 0.28 0.046 0.93 0.45 0.062 1.00 0.54 0.056 1.09 0.71 0.049

Representativeness
! = 5% 0.50 0.28 0.040 0.78 0.45 0.048 0.84 0.54 0.044 0.93 0.72 0.039
! = 15% 0.47 0.28 0.036 0.68 0.45 0.040 0.74 0.54 0.036 0.83 0.72 0.033

Optimism
Bias = 1:0% 0.51 0.28 0.041 0.80 0.46 0.050 0.86 0.54 0.045 0.95 0.72 0.040
Bias = 5:0% 0.47 0.27 0.036 0.68 0.44 0.039 0.73 0.54 0.035 0.83 0.72 0.032

Pessimism
Bias = 1:0% 0.51 0.29 0.042 0.81 0.46 0.051 0.87 0.55 0.046 0.96 0.72 0.041
Bias = 5:0% 0.48 0.29 0.038 0.71 0.46 0.042 0.76 0.55 0.038 0.86 0.73 0.0340

This table describes the predictive regressions of continuously compounded excess stock returns on a
constant and the dividend-price ratio in the data and implied by the model for diJerent learning rules with
ignorant and conscious learning. The table shows the across simulations averages and standard deviations
of the slope coeCcients and the across simulations average R2s. The return horizon ranges from one to 10
years.
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Table 6
Conditional volatility dynamics

Autocorrelations GARCH(1,1)

"1 "4 a b "[N	t+1; Re
t+1]

Avg Std Avg Std Avg Std Avg Std Avg Std

Ignorant learning
Data 0.758 na 0.332 na 0.136 na 0.810 na −0.423 na
Bayesian 0.623 0.050 0.208 0.070 0.164 0.073 0.423 0.252 −0.372 0.097

Near rational
	[�] = 2:5% 0.622 0.049 0.210 0.069 0.161 0.073 0.424 0.259 −0.371 0.096
	[�] = 7:5% 0.582 0.057 0.177 0.071 0.157 0.075 0.415 0.275 −0.333 0.098

Conservatism
! = 5% 0.652 0.045 0.225 0.070 0.171 0.073 0.406 0.252 −0.380 0.095
! = 15% 0.675 0.043 0.234 0.071 0.183 0.074 0.379 0.253 −0.388 0.093

Representativeness
! = 5% 0.625 0.049 0.208 0.069 0.159 0.071 0.424 0.258 −0.358 0.096
! = 15% 0.605 0.051 0.193 0.069 0.151 0.066 0.427 0.263 −0.344 0.097

Optimism
Bias = 1:0% 0.638 0.047 0.219 0.069 0.166 0.074 0.423 0.254 −0.388 0.0949
Bias = 5:0% 0.641 0.046 0.216 0.069 0.182 0.077 0.416 0.237 −0.442 0.0909

Pessimism
Bias = 1:0% 0.630 0.048 0.215 0.070 0.164 0.073 0.420 0.256 −0.375 0.096
Bias = 5:0% 0.614 0.054 0.195 0.071 0.173 0.072 0.409 0.243 −0.405 0.093

Conscious learning
Near rational

	[�] = 2:5% 0.621 0.051 0.208 0.071 0.191 0.086 0.407 0.238 −0.351 0.102
	[�] = 7:5% 0.603 0.055 0.188 0.072 0.212 0.100 0.384 0.252 −0.327 0.109

Conservatism
! = 5% 0.653 0.047 0.221 0.072 0.195 0.084 0.396 0.239 −0.354 0.101
! = 15% 0.678 0.045 0.231 0.073 0.209 0.085 0.376 0.238 −0.359 0.104

Representativeness
! = 5% 0.615 0.051 0.204 0.070 0.184 0.082 0.409 0.246 −0.339 0.100
! = 15% 0.593 0.054 0.190 0.040 0.178 0.078 0.420 0.241 −0.321 0.101

Optimism
Bias = 1:0% 0.631 0.049 0.213 0.071 0.189 0.083 0.408 0.238 −0.360 0.100
Bias = 5:0% 0.635 0.048 0.212 0.071 0.196 0.084 0.411 0.232 −0.400 0.099

Pessimism
Bias = 1:0% 0.627 0.051 0.210 0.071 0.186 0.083 0.405 0.253 −0.347 0.101
Bias = 5:0% 0.612 0.055 0.193 0.073 0.181 0.079 0.412 0.239 −0.322 0.106

This table describes the dynamics of the conditional volatility of excess stock returns in the data and
implied by the model for diJerent learning rules with ignorant and conscious learning. We report the across
simulations averages and standard deviations of the quarterly and annual autocorrelations of the conditional
volatility. The table also shows the across simulations averages and standard deviations of the coeCcient of
a GARCH(1,1) for the conditional volatility. Finally, we report the across simulations averages and standard
deviations of the correlation between changes in the conditional volatility and excess stock returns.
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riskless rate. But, the results in Table 5 suggest that pessimism with ignorant learn-
ing also eliminates most long-horizon predictability by the dividend yield. It therefore
appears as if pessimism replaces the equity premium and riskfree rate puzzles with a
dividend yield predictability puzzle. Finally, this counterfactual pattern is completely
obliterated once the agent is allowed to be conscious, as is, unfortunately, the success
of pessimism in Tables 3 and 4.

4.5.3. Conditional hereoskedasticity
Table 6 takes a closer look at the time-series properties of the conditional volatility.

We present quarterly and annual autocorrelations of the conditional volatility in the
data and implied by the model to measure the degree of volatility clustering, where
the results for the data are again based on the conditional volatility estimates obtained
using the approach of Brandt and Kang (2003). 23 As a more sophisticated way to
measure volatility clustering, we also 8t the following GARCH(1,1) model to data and
the simulated return series:

	2
t = c + a
2t−1 + b	2

t−1; (19)

where 	t is the conditional volatility and 
t denotes the excess return innovation. For
the model, we report the across simulations average and standard deviation of the
estimates of a and b. Finally, we consider the contemporaneous correlation between
changes in the conditional volatility and excess returns, denoted "[ret+1;N	t+1]. In the
data, this correlation is negative and large in magnitude, especially at the daily and
weekly frequency, and is typically attributed to the ‘leverage’ eJect.
The conditional volatility dynamics induced by Bayesian learning are again quite

realistic. The conditional volatility is highly persistent, with a quarterly autocorrelation
of 0.623. The annual autocorrelation of 0.208 is signi8cantly higher than the value of
0.147 implied by geometric decay of the quarterly autocorrelation, which is consistent
with the recent evidence of long-memory in volatility. 24 The GARCH(1,1) coeCcients
are consistently positive across simulations with average values of a= 0:164 and b=
0:423. Finally, the correlation between changes in volatility and returns is consistently
negative with an average value of −0:37.

The intuition underlying the volatility clustering is simple. The return volatility de-
pends on the degree of uncertainty about the state of the economy. Since this un-
certainty is resolved gradually through learning, periods of high volatility (great un-
certainty) and period of low volatility (little uncertainty) are clustered through time.
The negative correlation between changes in volatility and returns is equally intuitive.
Recall that expected returns are high in times of high volatility and low in times of
low volatility. Therefore, when the return volatility increases the stock price must drop
for the expected return to increase, and the opposite when the volatility decreases.
Given this intuition, understanding the eJects of the alternative learning rules on the

conditional volatility dynamics is straightforward. In particular, near rational learning

23 Volatility clustering refers to the fact that returns exhibit prolonged periods of persistently high and
persistently low volatility, so that large returns (positive or negative) tend to be followed by large returns.
24 See, for example, Ding et al. (1993), and Baillie et al. (1996).
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and representativeness cause the beliefs to be less persistent and hence reduce the
degree of volatility clustering. Conservatism, optimism, and pessimism lead to more
sluggish beliefs, which enhances volatility clustering. Similarly for the leverage eJect.
Near rational learning and conservatism shift subjective probability mass toward the
center of the state-distribution, creating less uncertainty about states one and four,
where the positive relationship between the risk premium and volatility (or the negative
relationship between returns and changes in volatility) is most pronounced, and thereby
dampen the leverage eJect. Optimism and pessimism result in more extreme beliefs
and, in particular, more frequent transitions between state three and uncertainty about
state four (with optimism) or between state two and uncertainty about state one (with
pessimism). These learning rules therefore enhance the leverage eJect. Notice that the
eJect of optimism is much stronger than that of pessimism. The reason is that, as
we discussed above, with optimism both the conditional risk premium and volatility
become more variable, while with pessimism they become less variable.
Overall, we conclude from these results that the volatility dynamics are relatively

insensitive to the learning rule, with either ignorant or conscious agents. The quar-
terly autocorrelation of the conditional volatility with Bayesian learning is 0.62; it
only ranges from 0.67 with conservatism to 0.58 with near rational learning and rep-
resentativeness for ignorant agents. The range is even narrower for conscious agents.
Similarly for the correlation between changes in volatility and return, which is −0:37 in
the Bayesian benchmark and only ranges from −0:34 with representativeness to −0:44
with optimism for ignorant agents.

5. Conclusion

We conduct a systematic study of the properties of equilibrium stock returns in an
incomplete information economy, in which agents need to learn the hidden state of
the endowment process. We consider optimal Bayesian learning as well as a broad set
of suboptimal alternative learning rules, including near rational learning, conservatism,
representativeness, optimism, and pessimism. We also diJerentiate between alternative
learning with ignorant agents, who are unaware that they learn suboptimally and hence
price assets as if they were Bayesian, and with conscious agents, who realize that they
learn suboptimally and account for this fact in setting asset prices.
Our 8ndings are easy to summarize. Bayesian learning performs reasonably well in

matching the unconditional moments of stock returns and in producing realistic varia-
tion in the conditional equity premium, return volatility, and Sharpe ratio. Alternative
learning of ignorant agents aJects both the level and time-variation of the moments of
stock returns. However, allowing agents to be conscious of their suboptimal learning
behavior eliminates virtually all these diJerences in the return dynamics. This sug-
gests that the bene8ts of considering alternative learning rules depend crucially on the
assumption of ignorance.
Our 8ndings beg the question of whether agents are ignorant or conscious in reality.

Although this question is ultimately for psychologists to answer, we suspect that the
truth lies somewhere between the two extremes. If that is the case, understanding the
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role of conscious agents is just as important as understanding the role of ignorant
agents, which has until now been the primary focus of the literature.
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Appendix A. Solution to the full-information economy

We conjecture the following solution:

Pt = �(St)Dt: (A.1)

Substituting Eq. (A.1) and the consumption policy Ct = Dt into Eq. (4), we have 25

�(St)� = ��Et

[(
Dt+1

Dt

)�−(�= )

(�(St+1) + 1)�
]
: (A.2)

Next, we write Eq. (1) in levels: Dt+1 = Dt exp[�(St) + 	
t+1] and substitute it into
Eq. (A.2) to obtain a set of N equations in the N unknown price-dividend ratios �(i),
for i = 1; 2; : : : ; N :

�(i)� = ��
N∑

j=1

pij(1 + �(j))� exp

[(
� − �

 

)
�(i) +

1
2
	2
(
� − �

 

)2]
: (A.3)

In general, these equations are non-linear and need to be solved numerically. In the
special case of power utility, the equations are linear and the system has an analytical
solution. 26 In either case, the fact that there exists an analytical or numerical solution
veri8es our initial conjecture that Eq. (A.1) solves the 8rst-order condition (4).
If there exists a risk-free asset, its return is given by 1=Et[Mt+1], where the intertem-

poral marginal rate of substitution (or pricing kernel) is

Mt+1 =

(
�
(
Ct+1

Ct

)−1= 
)�

(Rt+1)�−1: (A.4)

25 We use the fact that Rt+1 = (�t+1Dt+1 + Dt+1)=(�tDt) = ((�t+1 + 1)=�t)(Dt+1=Dt).
26 See, for example, Cecchetti et al. (1990).
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Substituting Eq. (A.1) and the consumption policy Ct = Dt into Eq. (A.4) and taking
conditional (on St) expectations yields, for i = 1; 2; : : : ; N ,

1
Rf (i)

=
��

�(i)�−1

N∑
j=1

pij(1 + �(j))�−1

×exp

[(
� − 1 − �

 

)
�(i) +

1
2
	2
(
� − 1 − �

 

)2]
; (A.5)

where �(i) is given by the solution to the set of Eqs. (A.3).

Appendix B. Application of the projection method

This section describes the application of the projection method of Judd (1992) to
our model. For illustrative purposes, we only present the case of CRRA utility and two
states of the world. Extension to the case with Epstein–Zin preference and multiple
states is straightforward.
Start with the equilibrium price-dividend ratio given by the Euler equation:

�Et[eNdt+1(1+�)[�(�t+1;Ndt+1) + 1]] − �(�t;Ndt) = 0; (B.1)

where Ndt is the exogenous state variable de8ned by

Ndt = �0 + �1St−1 + 	
t (B.2)

and where �t is the endogenous state variable.
Under the benchmark case of Bayesian learning, the law of motion for �B

t is
given by

�B
t+1 = p(t+1�B

t ) + (1 − q)(1 − t+1�B
t ); (B.3)

where

t+1�B
t =

exp
[
− (Ndt+1−�0−�1)2

2	2

]
�t

exp
[
− (Ndt+1−�0)2

2	2

]
(1 − �t) + exp

[
− (Ndt+1−�0−�1)2

2	2

]
�t

: (B.4)

We assume that the pricing functional has the form �(�t;Ndt) = �(�t). In words, the
price-dividend ratio does not depend on the exogenous state variable Ndt directly. 27

We seek a function �̂(·) which depends on a 8nite-dimensional vector of parameters
and which approximates the conditional expectation in the Euler Eq. (B.1). For this,
we construct

�̂(�;)) ≡
n∑

i=0

)i i(�); (B.5)

27 We have actually carried out the two-dimensional numerical algorithm for � as a bivariate function of
both �t and Ndt . The numerical solution veri8es our assumption that � does not depend on Ndt explicitly.
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where { i(�)}n
i=0 is a basis of complete Chebyshev polynomials of order n and )i are

the coeCcients of the polynomials. We let ) denote the vector of these coeCcients. 28

Next, we de8ne the residual equation as the Euler Eq. (B.1) evaluated at the ap-
proximate solution �̂(�t ;)):

R(�t ;)) = �Et[[exp(Ndt+1)]1+�[�̂(�t+1;)) + 1]] − �̂(�t ;)): (B.6)

Plugging �̂(�t ;)) from Eq. (B.1) and Ndt from Eq. (B.2) into Eq. (B.6), we obtain

R̂(�t ;)) =−
n∑

i=0

)i i(�t) + �Et

×
[
exp [(1 + �)(�0 + �1St + 	
t+1)]

[
n∑

i=1

)i i(�B
t+1) + 1

]]
; (B.7)

where the expectation Et is taken with respect to 
t+1 and St . Denote the integrand of
the expectation in (B.6) as f(St ; 
t+1) and then rewrite the expectation as

Et[f(St ; 
t+1)] =
∫

[�tf(1; 
t+1) + (1 − �t)f(0; 
t+1)] d+(
);

where +(
) is the cdf of the standard normal distribution. In addition

f(1; 
t+1) ≡ exp[(1 + �)(�0 + �1 + 	
t+1)]

[
n∑

i=1

)i i(�B
t+1(1)) + 1

]
; (B.8)

f(0; 
t+1) ≡ exp[(1 + �)(�0 + 	
t+1)]

[
n∑

i=1

)i i(�B
t+1(0)) + 1

]
(B.9)

and by Eq. (B.3)

�B
t+1(1) ≡ p[t+1�B

t (1)] + (1 − q)[1 − t+1�B
t (1)]; (B.10)

�B
t+1(0) ≡ p[t+1�B

t (0)] + (1 − q)[1 − t+1�B
t (0)]: (B.11)

Now the residual function becomes

R̂(�t ;)) = −
n∑

i=0

)i i(�t) + �
∫

[�tf(1; 
t+1) + (1 − �t)f(0; 
t+1)] d+(
) (B.12)

We want to choose ) such that R(�t ;)) is as close to zero as possible for all values
of �t . The projection method sets the residual close to zero in the weighted integral
sense. We use the orthogonal collocation. We choose ) such that the residual is set
to be exactly zero at n points called collocation points. Since our basis functions are
chosen from a set of orthogonal polynomials, the collocation points are given as the
roots of the nth order Chebyshev polynomials. R̂(�t ;)) evaluated at these collocation
points then gives a system of non-linear equations, which is in turn solved by a min-
imization routine. As a 8nal note, we evaluate the integral contained in the residual,∫
[�tf(1; 
t+1)+(1−�t)f(0; 
t+1)] d+(
); numerically using Gauss–Hermite quadrature.

28 In our implementation we use n= 10. The state space for the endogenous state variable �t is obviously
[0; 1]: The univariate Chebyshev polynomials are given by,  �

i (x) = cos[i arccos(2x − 1)] for i = 1; 2; : : : ; n.
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For the economies with ignorant agents who use alternative rules of learning, the
equilibrium pricing functional is the same as in the benchmark Bayesian case be-
cause the agents thinks they follow Bayesian learning. Conscious agents, in contrast,
understand the eJects of their non-Bayesian learning and therefore take these eJects
into account in making their optimal consumption and saving decisions, which in turn
changes the equilibrium asset prices. Simple modi8cations of the Bayesian solution
algorithm suCces for conscious learning. In particular, for near rational learning, con-
servatism, and representativeness, we only need to replace t+1�B

t (i); i = 0; 1 in the
right-hand sides of Eqs. (B.10) and (B.11) with alternative learning counterparts. For
optimism and pessimism, we only need to replace �B

t+1(i); i = 0; 1 in the right hand
sides of Eqs. (B.8) and (B.9) with their alternative learning counterparts.
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