Lecture Notes

Li, Livdan, and Zhang (2009, Review of Financial Studies): Anomalies

Lu Zhang¹

¹The Ohio State University and NBER

BUSFIN 920: Theory of Finance The Ohio State University Autumn 2011

Outline

What and Why

Model

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

Outline

What and Why

Mode

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

What

How much can the standard, neoclassical framework quantitatively explain the relations between stock returns and financing decisions?

Why

Return-related evidence on behavioral underreaction to market timing

- Equity issuance waves
- Stock market predictability associated with the new equity share
- Negative drift following SEOs
- Deteriorating profitability of issuers
- Positive drift following cash distribution, higher in value firms
- Mean-reverting profitability of cash-distributing firms
- Negative investment-return correlation, increasing in cash flow

Ritter (2003): managers time the market and investors underreact to financing decisions

Why Related literature

Empirical asset pricing and corporate finance:

 Ritter (1991, 2003); Loughran and Ritter (1995, 1997); Spiess and Affleck-Graves (1995, 1999); Ikenberry, Lakonishok, and Vermaelen (1995); Baker and Wurgler (2000, 2002); Titman, Wei, and Xie (2004)

Capital structure theory:

► Hennessy and Whited (2005, 2007); Strebulaev (2005)

Asset pricing theory:

► Stein (1996); Pastor and Veronesi (2005); Carlson, Fisher, and Giammarino (2006)

Outline

What and Why

Model

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

Partial equilibrium, neoclassical investment framework as in Zhang (2005)

Technology:

$$\underbrace{y_{it}}_{\text{Operating profits}} = \underbrace{e^{x_t + z_{jt}}}_{\text{Capital stock}} \underbrace{k_{jt}^{\alpha}}_{\text{Capital stock}} - \underbrace{f}_{\text{Fixed costs of production}}_{\text{Fixed costs of production}}$$

$$= \overline{x}(1-\rho_x) + \rho_x x_t + \sigma_x \epsilon_{t+1}^x$$

Aggregate productivity

$$z_{jt+1} = \rho_z z_{jt} + \sigma_z \epsilon_{jt+1}^z$$

Firm-specific productivity

Corporate investment, costly external equity

Equity floatation costs

$$\underbrace{c_{jt}}_{\text{Adjustment costs}} = \frac{a}{2} \left(\frac{i_{jt}}{k_{jt}}\right)^2 k_{jt}, \quad a > 0$$

$$\underbrace{e_{jt}}_{\text{External equity}} = \max \left\{ 0, \quad \underbrace{\left(i_{jt} + c_{jt}\right)}_{\text{The uses of funds}} - \underbrace{y_{jt}}_{\text{Internal funds}} \right\}$$

 $\underline{\lambda(e_{jt})}$ = $\underline{\lambda_0 \mathbf{1}_{\{e_{jt}>0\}}}$ + $\underline{\lambda_1 e_{jt}}$ Proportional flow costs

4 D > 4 P > 4 E > 4 E > 9 Q P

Payout, stochastic discount factor, and firm value

$$\underbrace{v(k_{jt}, x_t, z_{jt})}_{\text{Firm value}} = \max_{\{i_{jt}\}} \underbrace{d_{jt} - e_{jt} - \lambda(e_{jt})}_{\text{Effective cash flow}} + \mathbb{E}_t[m_{t+1}v(k_{jt+1}, x_{t+1}, z_{jt+1})]$$

$$\underbrace{d_{jt}}_{\text{Payout}} = \max \left\{ 0, \underbrace{y_{jt}}_{\text{Internal funds}} - \underbrace{(i_{jt} + c_{jt})}_{\text{Under funds}} \right\}$$

•

$$\begin{array}{cccc} \underline{m_{t+1}} & = & \eta e^{\gamma_t(\mathbf{x}_t - \mathbf{x}_{t+1})} \\ \text{Stochastic discount factor} & & & & \\ & \gamma_t & = & \gamma_0 + \gamma_1(\mathbf{x}_t - \overline{\mathbf{x}}) & \text{where} & \gamma_1 < 0 \end{array}$$

Risk and expected return

Evaluating the value function at the optimum yields:

$$v_{jt}=\widetilde{d}_{jt}+\mathsf{E}_t[m_{t+1}v_{jt+1}]\quad\Leftrightarrow\quad 1=\mathsf{E}_t[m_{t+1}r_{jt+1}]$$
 where $r_{jt+1}\equiv v_{jt+1}/(v_{jt}-\widetilde{d}_{jt})$

$$\mathsf{E}_t[r_{jt+1}] = \underbrace{r_{ft}}_{ ext{real interest rate}} + \beta_{jt} \lambda_{mt}$$

where
$$\beta_{jt} \equiv \frac{-\mathsf{Cov_t}[r_{jt+1},m_{t+1}]}{\mathsf{Var_t}[m_{t+1}]}$$
 and $\lambda_{mt} \equiv \frac{\mathsf{Var_t}[m_{t+1}]}{\mathsf{E_t}[m_{t+1}]}$

Outline

What and Why

Mode

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

Quantitative Results Calibration

Calibrate the model in monthly frequency:

α	\bar{x}	ρ_{x}	$\sigma_{\scriptscriptstyle X}$	$ ho_{\sf z}$	σ_{z}	η
			0.007/3			
γ_0	γ_1	f	δ	а	λ_0	λ_1
50	-1000	0.005	0.01	15	0.08	0.025

Similar to previous studies such as Gomes (2001) and Zhang (2005)

Optimal investment-to-capital, similar to optimal new equity-to-capital

Optimal payout-to-capital

Outline

What and Why

Mode

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

Beta decreases with the capital stock

Intuition for the physical-size effect

A two-period example: dates 1 and 2. Production is k_t^{α} . Capital: $k_2 = i + (1 - \delta)k_1$. No adjustment costs. A gross discount rate r

The firm's objective function is:

$$\max_{k_2} \ k_1^{\alpha} - k_2 + (1 - \delta)k_1 + \frac{1}{r}(k_2^{\alpha} + (1 - \delta)k_2)$$

The first-order condition says:

$$r = \alpha k_2^{\alpha - 1} + 1 - \delta \quad \Rightarrow \quad \frac{\partial r}{\partial k_2} = \alpha (\alpha - 1) k_2^{\alpha - 2} < 0$$

due to decreasing returns to scale

Intuition for the negative investment-return relation

Add quadratic capital adjustment costs, $(a/2)(i/k_1)^2k_1$, into the setup. Now the firm maximizes:

$$\max_{k_2} k_1^{\alpha} - k_2 + (1 - \delta)k_1 - \frac{a}{2} \left(\frac{k_2}{k_1} - (1 - \delta)\right)^2 k_1 + \frac{1}{r} (k_2^{\alpha} + (1 - \delta)k_2)$$

The first-order condition implies that:

$$r = \frac{\alpha[i + (1 - \delta)k_1]^{\alpha - 1} + 1 - \delta}{1 + a(i/k_1)} \Rightarrow \frac{\partial r}{\partial i} = \frac{\alpha(\alpha - 1)k_2^{\alpha - 2}}{1 + a(i/k_1)} - \frac{\alpha k_2^{\alpha - 1} a}{(1 + a(i/k_1))^2 k_1} < 0$$

Intuition: cash flow channel versus discount rate channel

More curvature in production, lower risk (intuition? no clue)

Lower fixed costs of production, lower risk (intuition: operating leverage)

Higher adjustment costs of capital, higher risk (intuition: real flexibility)

Lower fixed costs of financing, lower risk (intuition: real flexibility)

Higher variable costs of financing, higher risk (intuition: real flexibility)

Outline

What and Why

Mode

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

Applying the Kydland-Prescott (1982) quantitative-theory approach

- 1. Simulate 100 artificial samples of 5000 firms and 480 months
- 2. Replicate empirical studies on the artificial samples
- 3. Report the cross-simulation averaged statistics
- 4. Compare the model-implied moments with data moments

Overidentification: 14 parameters vs. 424 moments!

Unconditional moments

Table 1 Unconditional moments from the simulated and real data

	Data	Model
The average annual risk-free rate	0.018	0.021
The annual volatility of risk-free rate	0.030	0.029
The average annual Sharpe ratio	0.430	0.405
The average annual investment-to-assets ratio	0.130	0.119
The volatility of investment-to-assets ratio	0.006	0.013
The frequency of equity issuance	0.099	0.285
The average new equity-to-asset ratio	0.042	0.043
The average market-to-book ratio	1.493	1.879
The volatility of market-to-book	0.230	0.242

The relation between investment and average returns

 $\label{eq:continuous} \begin{tabular}{ll} Table 2 \\ Excess \ returns \ of \ capital \ investment \ (CI) \ portfolios \end{tabular}$

Panel A: Excess	return distribution	of capital	investment	portfolios

CI portfolio	Mean		Std I	Std Dev		Max		Median		Min	
	Data	Model	Data	Model	Data	Model	Data	Model	Data	Model	
Low	0.042	0.064	0.010	0.050	3.38	0.16	0.06	0.07	-3.11	-0.07	
2	0.083	0.010	0.007	0.031	2.26	0.08	0.10	0.01	-2.76	-0.06	
3	0.055	-0.007	0.006	0.023	1.84	0.05	0.03	-0.01	-2.07	-0.06	
4	-0.083	-0.021	0.005	0.027	1.38	0.04	-0.06	-0.02	-1.88	-0.08	
High	-0.127	-0.038	0.010	0.046	2.61	0.06	-0.08	-0.04	-4.08	-0.13	
CI spread	0.169	0.101	0.009	0.004	3.30	0.07	0.12	0.07	-2.63	0.04	

Panel B: $r_{jt+1}^a = l_{0t} + l_{1t} C I_{jt} + l_{2t} C I_{jt} \times DC F_{jt} + \epsilon_{jt+1}$

	CI		$CI \times DC$	F
	Data	Model	Data	Model
Slopes	-0.79	-0.56	-0.76	-0.47
(t)	(-2.80)	(-3.14)	(-2.19)	(-3.44)

Panel C: Cross-sectional regressions of r_{jt+1}^a on CI, $CI \times DCF$, and rolling market betas $(\hat{\beta}_{jt})$; and on CI, $CI \times DCF$, and true betas (β_{jt})

	CI	$CI \times DCF$	$\hat{\beta}_{jt}$	CI	$CI \times DCF$	β_{jt}
Slopes	-0.32	-0.16	-0.04	-0.38	-0.41	0.43
(t)	(-2.31)	(-3.67)	(-3.37)	(-1.85)	(-1.65)	(4.83)

Empirical distribution of the mean CI spread

Empirical distributions of the slopes of CI and $CI \times DCF$ and their t-statistics in Fama-MacBeth cross-sectional regressions

Monthly cross-sectional regressions of percentage stock returns

Table 3 Fama-MacBeth (1973) monthly cross-sectional regressions of percentage stock returns on size, book-to-market, and the new issues dummy

				Panel A: Re	plicating Lou	ghran and R	itter (1995,	Table VIII)				
				log(ME)			log(BM)				ISSUE	
Sample				Data	Model		Data		Model		Data		Model
All months											-0.49 (-3.98)		-0.81 (-4.76)
				-0.05 (-0.91)	0.63 (4.22)		0.30 (4.57)		0.89 (8.18)		-0.38 (-2.32)		-0.44 (-2.87)
Periods following light volume				-0.26 (-3.12)	0.88 (5.21)		0.20 (1.80)		1.00 (7.62)		-0.17 (-1.19)		0.06 (0.31)
Periods following heavy volume				0.16 (2.11)	0.39 (1.39)		0.39 (6.30)		0.79 (4.49)		-0.60 (-3.98)		-0.90 (-3.75)
	Panel	B: Cross-se	ctional regn	essions contro	olling for rolli	ng betas (β _{ji}), true betas	$s(\beta_{jt})$, or t	rue expect	ed returns (1	$\Sigma_t[r_{jt+1}]$		
	log(ME)	log(BM)	ISSUE	$\hat{\beta}_{jt}$	log(ME)	log(BM)	ISSUE	β_{jt}		log(ME)	log(BM)	ISSUE	$E_t[r_{jt+1}]$
All months			-0.30 (-2.64)	-0.95 (-3.09)			-0.31 (-3.37)	0.67 (15.45)				-0.31 (-1.52)	0.96 (9.99)
	0.63 (6.74)	0.55 (8.29)	-0.27 (-2.25)	-0.20 (-4.04)	-0.79 (-1.12)	-0.70 (-1.53)	-0.27 (-2.96)	0.70 (9.15)		-0.07 (-1.67)	0.58 (0.90)	-0.23 (-1.28)	0.87 (9.39)
Periods following light volume	0.19 (4.63)	0.45 (3.15)	-0.07 (-1.03)	-0.16 (-2.02)	-0.91 (-1.65)	-0.61 (-1.03)	-0.16 (-2.43)	0.82 (8.09)		-0.08 (-1.67)	0.29 (0.92)	-0.15 (-1.52)	0.89 (8.93)
Periods following heavy volume	1.08 (8.89)	0.66 (9.30)	-0.47 (-3.73)	-0.24 (-4.57)	-0.55 (-1.41)	-0.79 (-1.58)	-0.39 (-3.19)	0.59 (7.18)		-0.06 (-1.33)	0.86 (0.85)	-0.32 (-1.06)	0.86 (9.79)

Empirical distributions of the slopes of the *ISSUE* dummy in cross-sectional regressions, univariate and multiple

Empirical distributions of the slopes of the *ISSUE* dummy in cross-sectional regressions (multiple), light and heavy volume periods

Positive long-term stock price drift following open market share repurchases

Data: Ikenberry, Lakonishok, and Vermaelen (1995)

	Annual buy-and-hold returns							
	Repu	rchase	Diffe	rence				
Year	Data	Model	Data	Model	Data	Model		
1	20.8	10.6	18.8	9.8	2.04	0.74		
2	18.1	8.9	15.8	8.7	2.31	0.22		
3	21.8	8.3	17.2	8.1	4.59	0.14		
4	8.6	7.9	9.5	7.8	-0.96	0.10		

Larger difference in compounded holding period returns...

Empirical distributions for the differences in annual buy-and-hold returns between the repurchase portfolio and the reference portfolio: Years $\bf 1$ and $\bf 2$

Empirical distributions for the differences in annual buy-and-hold returns between the repurchase portfolio and the reference portfolio: Years 3 and 4

Mechanism: investment policy and expected returns

Assume a two-period structure:

$$\underbrace{1 + a\left(\frac{i_{jt}}{k_{jt}}\right)}_{\text{Marginal Cost of Investment}} = \underbrace{\frac{\text{Expected cash flow}}{\text{Expected return}}}_{\text{Marginal }q}$$

Consider two firms, A and B, with similar expected cash flows, then

$$\frac{i_{At}}{k_{At}} > \frac{i_{Bt}}{k_{Bt}} \quad \Leftrightarrow \quad E_t[r_{At}] < E_t[r_{Bt}]$$

Intuition: investment policy and expected return

Intuition: financing policy and expected return

Intuition: payout policy and expected return

Intuition: book-to-market and expected return

Outline

What and Why

Mode

Quantitative Results: Optimal Policies

Quantitative Results: Fundamental Determinants of Risk

Quantitative Results: Simulations

Summary and Future Work

Conclusion Summary

The q-theory of investment is a good start to understanding the quantitative relations between stock returns and financing decisions

Conclusion

Future work

Again, go from calibration to estimation to be more rigorous:

- Structural estimation by picking informative Euler equations implemented on real data, instead of simulated data
- Value function iteration combined with SMM

Integrate the framework more deeply with dynamic corporate finance as in Hennessy and Whited's and Neng's work

- ► Embed the standard trade-off theory of capital structure into the investment-based asset pricing framework. Questions: The impact of time-varying risk premiums on corporate policies
- ► What determines the forms of payout? An neoclassical approach? The weak quantitative results on payout-related evidence deserve further studies