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1. Introduction

Initiated by Cochrane (1991, 1996), asset pricing based
on the g-theory of investment argues that real investment
explains cross-sectional differences in expected returns.
Intuitively, all else equal, low costs of capital imply high
net present values of new projects and high investment,
and high costs of capital imply low net present values of
new projects and low investment. The literature has so far
applied the negative expected return-investment relation
predicted by g-theory to explain a wide range of capital
markets anomalies (empirical relations between average
stock returns and firm characteristics that cannot be
explained by traditional asset pricing models).! In this

! Cochrane (1991) shows that aggregate investment-to-capital

strongly predicts stock market excess returns. Cochrane (1996) uses
residential and nonresidential investment growth, and Li, Vassalou, and
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paper we derive and test a novel implication of g-theory
on cross-sectional returns—the expected return-invest-
ment relation should be steeper in firms with high
investment frictions than in firms with low investment
frictions. By exploring the previously ignored interaction
between the expected return-investment relation and
investment frictions, our tests address whether these
anomalies can be attributed to g-theory.

With frictions, investment entails deadweight costs,
which cause investment to be less elastic to changes in
the discount rate than when frictions are absent. Using a
simple model, we show that the magnitude of this
elasticity decreases with investment costs. The higher
are the investment costs that firms face, the less elastic
firms’ investments are in responding to variation in the
discount rate. Equivalently, a given change in investment
corresponds to a larger change in the discount rate,
meaning that the expected return-investment relation is
steeper for firms with high investment frictions than for
firms with low investment frictions. If g-theory does
explain a particular investment related anomaly, the
relation between expected returns and the anomaly
variable must satisfy this prediction.

To test this prediction, we identify investment frictions
with firm-level proxies of financing constraints. The
premise is that if there are investment costs such as
adjustment costs of capital, frictions in capital markets
induce additional financing costs at the margin. We use
three financing constraints proxies: asset size, payout
ratio, and bond ratings. Firms with small asset, low payout
ratios, and unrated public debt are more financially
constrained than firms with big asset, high payout ratios,
and rated public debt. We use six investment-related
anomaly variables: investment-to-assets (Lyandres, Sun,
and Zhang, 2008), asset growth (Cooper, Gulen, and Schill,
2008), investment growth (Xing, 2008), net stock issues
(Fama and French, 2008), abnormal corporate investment
(Titman, Wei, and Xie, 2004), and net operating assets
(Hirshleifer, Hou, Teoh, and Zhang, 2004). We estimate
Fama and MacBeth (1973) cross-sectional regressions of
returns on a given anomaly variable within extreme
subsamples split by a given financing constraints proxy.
Under the g-theory logic, the slope should be negative.
With investment frictions, the negative slope should be

(footnote continued)

Xing (2006) use sectoral investment growth to price the cross section of
returns. Zhang (2005), Li, Livdan, and Zhang (2009), and Livdan, Sapriza,
and Zhang (2009) use dynamic investment models to understand the
value anomaly, external financing anomalies, and the relation between
average returns and financing constraints, respectively. Anderson and
Garcia-Feij6o (2006) show that investment growth is correlated with
size and book-to-market. Lyandres, Sun, and Zhang (2008) show
that adding an investment factor into the capital asset pricing model
and the Fama and French (1993) three-factor model substantially
reduces the magnitude of the underperformance following initial public
offerings, seasoned equity offerings, and convertible bond offerings. Xing
(2008) shows that an investment growth factor explains the book-to-
market effect approximately as well as Fama and French’s value factor.
Liu, Whited, and Zhang (2009) derive and test implications of
investment Euler equations for cross-sectional returns. Finally, Wu,
Zhang, and Zhang (2010) show that capital investment helps explain the
accrual anomaly.

greater in magnitude in the more constrained subsample
than in the less constrained subsample.

Overall, the news is not good for g-theory as an
explanation of the anomalies. First, we show some
evidence in support of the g-theory interpretation of the
investment-to-assets and the asset growth effects. Their
slopes are significantly greater in magnitude in the more
constrained subsample than in the less constrained
subsample. For example, the investment-to-assets slope
is —0.85 in the small asset tercile and —0.33 in the big
asset tercile, and the difference is more than 2.1 standard
errors from zero. This slope is —0.93 in the low
payout ratio tercile and —0.39 in the high payout ratio
tercile, and the difference is more than 2.4 standard errors
from zero. The investment-to-assets slope is —0.86 in
the subsample without bond ratings and —0.47 in the
subsample with bond ratings, and the difference is more
than 2.4 standard errors from zero. The difference in the
asset growth slope is significant across extreme asset size
terciles and across the subsamples with and without bond
ratings, but it is insignificant across extreme payout ratio
terciles. However, the evidence is not robust to controlling
for the January effect and to controlling for size, book-to-
market, and momentum in cross-sectional regressions.

Second, no evidence exists that g-theory with invest-
ment frictions explains the investment growth, net stock
issues, abnormal corporate investment, or net operating
assets anomalies. Their slopes do not differ significantly
across extreme financing constraints subsamples. For
example, the difference in the investment growth slope
is only —0.04 across the extreme asset size terciles and is
within 0.9 standard errors from zero. The difference in the
net stock issues slope across the subsamples with and
without bond ratings is —0.04, which is within 0.2
standard errors from zero. The difference in the abnormal
corporate investment slope across extreme payout ratio
terciles is —0.05, which is within 1.3 standard errors from
zero. The slope difference sometimes even goes in the
wrong direction from the prediction of g-theory. In
particular, the net operating assets slope in the high
payout ratio tercile is higher in magnitude than that in the
low payout ratio tercile by 0.06, although the difference is
insignificant.

Third, and more important, limits-to-arbitrage proxies
dominate financing constraints measures in explaining
the magnitude of the investment-to-assets and asset
growth anomalies.? We show that proxies for investment
frictions are correlated with those for limits-to-arbitrage
(idiosyncratic volatility and dollar trading volume). Firms
with stocks that are more costly to trade face higher
investment frictions. However, in direct comparisons
financing constraints proxies are largely insignificant after
we control for limits-to-arbitrage, but limits-to-arbitrage
proxies (in particular, idiosyncratic volatility) remain

2 Shleifer and Vishny (1997) argue that anomalies can persist if
arbitrage costs outweigh arbitrage benefits, and a sizable empirical
literature shows that anomalies are stronger in firms with high limits-
to-arbitrage than in firms with low limits-to-arbitrage (e.g., Pontiff,
1996; Ali, Hwang, and Trombley, 2003; Mashruwala, Rajgopal, and
Shevlin, 2006).
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significant after we control for financing constraints. If the
empirical proxies have sufficiently high quality, the
overall evidence suggests that the g-theory explanation
for the investment-to-assets and asset growth anomalies
is not robust to controlling for limits-to-arbitrage and that
the mispricing hypothesis seems to better explain the
anomalies in question. However, no evidence exists that
arbitrage costs affect the magnitude of the investment
growth, net stock issues, or abnormal corporate invest-
ment anomalies from the prediction of the mispricing
hypothesis.

The rest of the paper is organized as follows. Section 2
develops the investment frictions hypothesis from
g-theory and sets up limits-to-arbitrage as an alternative
hypothesis. Section 3 describes our data. Section 4
presents our empirical results. Finally, Section 5 con-
cludes.

2. Hypothesis development

We develop the investment frictions hypothesis based
on g-theory in Section 2.1, and set up limits-to-arbitrage
as an alternative hypothesis in Section 2.2.

2.1. A model of investment frictions

There are two periods, 0 and 1, and heterogeneous
firms, indexed by i. Firms use capital and costlessly
adjustable inputs to produce a perishable good. The levels
of these inputs are chosen each period to maximize the
firms’ operating profits, defined as revenues minus the
expenditures on these inputs. Firm i’s operating profits are
given by ITKjy in period 0 and ITK;; in period 1, in which
IT is the long-term average return on assets. We assume
that I7 is time-invariant and constant across firms to focus
on the role of investment costs. Kjo and K;; are firm i's
capital in periods 0 and 1, respectively. The profit function
exhibits constant returns to scale, meaning that I7 is both
the marginal product of capital and the average product of
capital. Taking the operating profits as given, firms choose
optimal investment to maximize their market value.

Firm i starts with capital stock, Kjg, invests in period O,
and produces in both periods. The firm exits at the end of
period 1 with a liquidation value of (1-9)K;;, in which
0 < 0 <1 is the rate of capital depreciation. Capital evolves
as Ky =Ilp+(1-0)Kjg, in which Iy is capital investment
over period 0. When investing, firms incur deadweight
costs due to investment frictions. The cost function,
denoted ((Ip,Kip), is increasing and convex in I and
decreasing in Kjo. In particular, we assume that the cost of
investment frictions per dollar of capital is quadratic in
capital growth:

Ji (To\?
Clioko =5 (1) Ko M
1

We use the cost parameter /; > 0 to model the magnitude
of the investment costs. Firms with higher A; face more
investment frictions than firms with lower 4;.

There is no restriction that I is positive. The total
cost of investment is Ijo+((Ijp,Kip), in which Ijg is the

purchasing cost of the capital good when [;y > 0 and is the
resale value of the capital good when I[;p <0 (negative
cost). When [;y > 0, the marginal (total) cost of investment
is 14 0C(I;0,Kip)/0lip = 1+ A;(Iip /Kip), which is greater than
or equal to one. When [jy < 0, the marginal (total) revenue
of disinvestment continues to be 1+ 4;(lip/Kjp), which is
less than one (the marginal resale value of the capital
good) because of investment frictions.

Firm i has a gross discount rate, denoted R; The
discount rate varies across firms due to, for example, firm-
specific loadings on macroeconomic risk factors. The firm
chooses optimal investment, I}y, to maximize its market
value at the beginning of period 0:
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max HK,‘(J—I,‘(J— = (IiO
{lio}

2
3 (1) Kot g UIKn+(1-0KaL @)
The market value of firm i is the sum of period 0’s free
cash flow, ITKjo—Iio—(2i/2)(io /Kip)*Kio, and the discounted
value of date 1's cash flow, (ITKj; +(1—0)K;;)/R;. In this
two-period setup, firm i does not invest in the second
period, I;; =0, meaning that date 1's cash flow is the sum of
the operating profits and the liquidation value of the
capital.

The trade-off of firm i when making investment
decisions is between foregoing free cash flows today in
exchange for higher free cash flows tomorrow (when
I¥; > 0) or increasing free cash flows today at the expense
of lower free cash flows tomorrow (when I} <0). Setting
the first-order derivative of the objective function with
respect to [;p to zero yields

n+1-6

Ri= 1170
' 1+ 5 /Kio)
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This optimality condition is intuitive. When I} > 0, the
numerator in the right-hand side of Eq. (3) is the marginal
benefit of investment, IT+1-¢, including the marginal
product of capital, I1, and the marginal liquidation value
of capital, 1-0. The denominator is the marginal (total)
cost of investment that includes the marginal purchasing
cost of the capital good and the marginal investment cost.
The marginal benefit of investment is in date 1's dollar
terms, and the marginal cost of investment is in date 0’s
dollar terms. As such, the optimality condition says that
the marginal benefit of investment, discounted in date O’s
dollar terms, should be equal to the marginal cost of
investment. Equivalently, the investment return (the ratio
of the marginal benefit of investment in date 1’s dollar
terms divided by the marginal cost of investment in date
0’s dollar terms) should equal the discount rate, as in
Cochrane (1991).

The economic interpretation of Eq. (3) when I}; <0 is
parallel. In particular, the numerator in the right-hand
side of the equation is the foregone marginal benefit of
investment in period 1, and the denominator is the period
0’s marginal benefit of disinvestment that includes the
marginal resale value of the capital good, net of the
marginal disinvestment cost due to frictions. The
optimality condition says that the foregone marginal
benefit of investment in period 1, discounted in date O’s
dollar terms, should equal the marginal benefit of
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disinvestment in period 0. Equivalently, the investment
return should equal the discount rate, even when I} <0.
Firms choose investment taking R; and /; as given,
meaning that [;p/Kj is a function of R; and A;. We totally
differentiate Eq. (3) with respect to R; to obtain

(I /Kio) [+l /Kio))*
dRi — ALdI+1-9)

<0. 4)

As such, investment and the discount rate are negatively
related. Investment is related to average returns with a
negative slope (e.g., Cochrane, 1991; Xing, 2008; Liu,
Whited, and Zhang, 2009).

We are interested in knowing how /; affects the
magnitude of the expected return-investment relation. To
this end, we totally differentiate the absolute value of
d(Iio/Kio)/dR; with respect to A; to obtain

|d(1 /KIO){ d 2[1 +j~ (IO/KIO)] ) d(I /KIO)
dR; Ai(m+1=0) 1<,0 AL
[+ 20 /Kio)? 5)
2H(m+1-0)
_ [1 +/L‘l(11()/1<10) (6)
22 f(m+1-0) 0

The second equality follows because

Ifo d(Il()/KIO)
from totally differentiating both sides of Eq. (3) with
respect to /;.

Fig. 1 illustrates the economic mechanism at work. We
let I;o/Kio vary from —20% to 80% per annum with 5 =0
and IT = 15% per annum. We plot the monthly R; implied
by Eq. (3) against monthly Ij/Ki, for three parameter
values of 4;: zero (no frictions, the black dotted line); 10
(low frictions, the blue solid line), and 30 (high frictions,
the red dashed line). As we gradually increase 4;, the

investment-discount rate relation, d(lio/Kio)/dR;, becomes
flatter. With higher costs, investment is less elastic
to the discount rate. Equivalently, the expected
return-investment  relation,  dRi/d(Iig/Kio), becomes
steeper. In particular, when investment approaches
being frictionless, 4;—0, Iio/Kio becomes vertical in the
discount rate, and the expected return becomes flat in
lio/Kio-

The economic intuition is as follows. The derivative
d(Iio/Kio)/dR; measures the elasticity of optimal investment
with respect to the discount rate. When investment
approaches being frictionless, 4; —0, investment becomes
infinitely elastic to changes in the discount rate. With
frictions, 4; > 0, investment entails deadweight costs, and
higher magnitude investment-to-capital entails higher
deadweight costs. As such, investment is less elastic to the
discount rate. The crucial observation for our empirical
tests is that the magnitude of this elasticity decreases
with /;. The higher is 4;, the less elastically investment
responds to changes in the discount rate. That is, the
higher is /;, a given magnitude change in investment-to-
capital corresponds to a higher magnitude change in the
discount rate. This effect means that the negative
expected return-investment relation is steeper for firms
with high investment frictions than for firms with low
investment frictions. Our empirical analysis is centered
around this investment frictions hypothesis.

A natural test of whether g-theory explains invest-
ment-related anomalies is to check how the magnitude of
the expected return-investment relation varies across
different subsamples of firms categorized by firm-level
investment costs. As such, our primary test is to estimate
univariate Fama and MacBeth (1973) cross-sectional
regressions of monthly percent excess returns on a given
investment-related anomaly variable within each
subsample, defined as having high, medium, and low
investment costs. If g-theory explains the anomaly, the
magnitude of the slope on the anomaly variable should be

2 | =
o 15}
©
€
>
Q
?
5 1
(0]
£
'_
05}
-0.02 0

0.04 0.06

Investment-to—capital

Fig. 1. The discount rate versus investment-to-capital in the two-period g-theory model. This figure plots the discount rate, R;, against the optimal
investment-to-capital ratio, l;o/Kio, based on Eq. (3). We plot the relation for three parameter values of /;: zero (no frictions, the black dotted line), 10 (low
frictions, the blue solid line), and 30 (high frictions, the red dashed line). We set = 0.15/12 per month, d =0, and let I;p/K;o vary from —0.20/12 to 0.80/

12 per month.
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higher in firms with high investment frictions than in
firms with low investment frictions.

2.2. Limits-to-arbitrage as an alternative to q-theory

Anomalies are empirical relations between average
returns and firm characteristics, relations that cannot be
explained by traditional asset pricing models. Many
empirical studies interpret anomalies as driven by
systematic mispricing. If anomalies are due to mispricing,
why do professional arbitrageurs not exploit the trading
opportunities to eliminate the mispricing? Shleifer and
Vishny (1997) argue that, because of trading frictions,
arbitrage can be costly and limited. When the costs of
arbitrage outweigh the benefits of arbitrage, mispricing
might not be quickly and entirely traded away.

While the g-theory explanation stresses the impor-
tance of investment frictions from the firms’ side, the
limits-to-arbitrage explanation stresses the importance of
trading frictions from the investors’ side. Because the two
theories depend on different types of frictions that coexist
in the data, they are unlikely to be mutually exclusive.
Investment frictions and trading frictions can be related.
Firms with stocks that are more costly to trade could also
face higher investment costs. As such, it is not incon-
ceivable that the evidence that has been exclusively
attributed to limits-to-arbitrage in prior studies might
be driven partly by investment frictions per g-theory. It
also means that the effect of investment frictions on
anomalies might be due to limits-to-arbitrage. We
address these possibilities in Section 4.3.

3. Data

We obtain accounting data from Compustat and stock
returns data from the Center for Research in Security
Prices (CRSP). All domestic common shares trading on
NYSE, Amex, and Nasdaq with accounting and returns
data available are included except for financial firms,
which have four-digit standard industrial classification
(SIC) codes between 6000 and 6999. Following Fama and
French (1993), we exclude closed-end funds, trusts,
American Depository Receipts, Real Estate Investment
Trusts, units of beneficial interest, and firms with negative
book value of equity. To mitigate backfilling biases, we
require firms to be listed on Compustat for two years
before including them in our sample. We use the one-
month Treasury bill rate from Kenneth French’s website
as the risk-free rate. The sample is from 1963 to 2008.

3.1. Proxies for investment frictions

The investment frictions hypothesis is derived under a
general formulation of the investment-cost function.
Empirically, we identify investment frictions with firm-
level measures of financing constraints. We assume that
more constrained firms face higher investment costs. This
identification strategy is straightforward to implement.
In recent years the corporate finance literature has
developed firm-level proxies for financing constraints

that are reasonably well accepted. We employ three
measures of financing constraints: asset size, payout ratio,
and bond ratings. Firms with small asset size, low payout
ratios, or unrated corporate bonds are financially more
constrained than firms with big asset size, high payout
ratios, or rated corporate bonds.

Asset size. We measure asset size as book value of total
assets (Compustat annual item AT). At the end of June of
each year t, we sort all firms into terciles based on total
assets for the fiscal year ending in calendar year t—1 using
the breakpoints for all public firms traded on NYSE, Amex,
and Nasdaq. We assign firms in the small asset tercile of
the annual asset size distribution to the more constrained
subsample and firms in the big asset tercile to the less
constrained subsample. Asset size is a standard measure
of financing constraints (e.g., Gilchrist and Himmelberg,
1995; Erickson and Whited, 2000; Almeida and Campello,
2007). Small asset firms are usually young and less
familiar to investors than big asset firms. It seems
reasonable to assume that small asset firms are more
affected by financial frictions than big asset firms.

Payout ratio. The payout ratio also is a common
measure of financing constraints (e.g., Fazzari, Hubbard,
and Peterson, 1988; Almeida, Campello, and Weisbach,
2004; Almeida and Campello, 2007). The payout ratio is
the ratio of total distributions including dividends for
preferred stocks (Compustat annual item DVP), dividends
for common stocks (item DVC), and share repurchases
(item PRSTKC) divided by operating income before
depreciation (item OIBDP). At the end of June of each
year t, we sort all firms into terciles on their payout ratios
for the fiscal year ending in calendar year t—1 using the
breakpoints for all public firms traded on NYSE, Amex, and
Nasdaqg. We assign firms in the low payout ratio tercile to
the more constrained subsample and firms in the high
payout ratio tercile to the less constrained subsample.

A complication arises when firms have negative earn-
ings that makes the payout ratio ill-defined. In total about
18% of firm-year observations have negative earnings and
about 5.4% of firm-year observations have negative earn-
ings as well as positive distributions (the sum of
Compustat annual items DVP, DVC, and PRSTKC). The
existing literature does not provide clear guidance on how
to deal with firms with negative earnings. We assign firms
with negative earnings and positive distributions to the
less constrained subsample, and firms with negative
earnings and zero distribution to the more constrained
subsample.

Bond rating. We retrieve data on firms’ bond ratings
from Standard & Poor’s and identify the firms that never
had their public debt rated in our sample period. These
firms are assigned to the more constrained subsample in
years when they report positive public debt. The less
constrained subsample contains firms whose public debt
has been rated during the sample period and firms
without public debt outstanding. We assume that a firm
has public debt if its long-term debt (Compustat annual
item DLTT) is nonzero. This approach has been used
extensively in corporate finance (e.g., Kashyap, Lamont,
and Stein, 1994; Cummins, Hassett, and Oliner, 1999;
Almeida, Campello, and Weisbach, 2004; Almeida and
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Campello, 2007). We experiment with commercial paper
(short-term debt) ratings as an alternative measure as in
Almeida, Campello, and Weisbach (2004), and the results
are largely similar (not reported).?

3.2. Anomaly variables related to real investment

We consider six anomaly variables that have been
linked to real investment in prior studies.

Investment-to-assets, I/A. Lyandres, Sun, and Zhang
(2008) use this variable as the primary investment
variable motivated by g-theory. I/A is the change in gross
property, plant, and equipment (Compustat annual item
PPEGT) plus the change in inventories (item INVT) divided
by lagged total assets (item AT). Property, plant, and
equipment represent long-lived assets for operations over
many years such as buildings, machinery, furniture, and
other equipment. Inventories represent short-lived assets
within a normal operating cycle such as merchandise, raw
materials, supplies, and work in progress.

Asset growth, AA/A. Asset growth is measured as the
change in total assets (Compustat annual item AT) divided
by lagged total assets, and it is the most comprehensive
measure of investment-to-assets, in which investment is
the change in total assets. Cooper, Gulen, and Schill (2008)
show that asset growth strongly predicts future abnormal
returns and interpret the evidence by saying that “bias in
the capitalization of new investments leads to a host of
potential investment policy distortions” and that “such
potential distortions are present and economically mean-
ingful” (p. 1648). Our tests can address whether g-theory
explains the asset growth effect.

Investment growth, Al/I. Xing (2008) shows that firms
with low investment growth earn significantly higher
average returns than firms with high investment growth
and interprets the evidence as consistent with g-theory.
Xing also shows that an investment growth factor, defined
as the difference in returns between stocks with low
investment growth and stocks with high investment
growth, can account for the book-to-market -effect
approximately as well as the Fama and French (1993)
value factor. We use Xing’s definition of investment
growth as the growth rate of capital expenditures
(Compustat annual item CAPX). Including investment
growth in our tests can address whether Xing’s evidence
is explained by g-theory.

3 We experiment with the Kaplan and Zingales (1997) index, but the
index is weakly correlated with the other measures. Several studies cast
doubt on this index as a valid measure of financing constraints (e.g.,
Almeida, Campello, and Weisbach, 2004; Whited and Wu, 2006;
Hennessy and Whited, 2007; Hadlock and Pierce, 2010). Reestimating
Kaplan and Zingales's ordered logit model on a larger, more recent
sample, Hadlock and Pierce find that only two out of five components in
the index have signs consistent with the original index. As such, we do
not use the Kaplan and Zingales index. Whited and Wu (2006) propose
another financing constraints index by combining cash flow-to-assets, a
cash dividend dummy, long-term debt-to-assets, total assets, and
industry and firm-level sales growth. The cross-sectional Spearman’s
correlation between asset size and their index is —0.94 in our sample.
We opt to use asset size because it is simpler and is less likely to be
affected by specification errors (see also Hadlock and Pierce, 2010).

Net stock issues, NSI. Combining evidence that returns
following equity issues are low (e.g., Ritter, 1991;
Loughran and Ritter, 1995) and that returns following
stock repurchases are high (e.g., Ikenberry, Lakonishok,
and Vermaelen, 1995), Daniel and Titman (2006), Fama
and French (2008), and Pontiff and Woodgate (2008)
show that net stock issues and average returns are
negatively correlated. NSI is the natural log of the ratio
of the split-adjusted shares outstanding (Compustat
annual item CSHO times item ADJEX_C) at the fiscal year
ending in calendar t—1 divided by the split-adjusted
shares outstanding at the fiscal year ending in t—2.

The interpretation of the NSI effect is controversial.
Ritter (1991), Loughran and Ritter (1995), and Ikenberry,
Lakonishok, and Vermaelen (1995) argue that the evi-
dence suggests behavioral market timing. Managers can
create value for existing shareholders by timing financing
and payout decisions to exploit market inefficiencies, and
investors underreact to the pricing implications of this
market timing behavior. In contrast, Li et al. (2009)
argue that the NSI effect is connected to investment. The
balance-sheet constraint of firms implies that the uses of
funds must equal the sources of funds. As such, net issuers
should invest more and earn lower expected returns than
nonissuers. Lyandres, Sun, and Zhang (2008) show that
equity issuers invest more than nonissuers and that
adding an investment factor into standard factor models
substantially reduces the amount of long-term under-
performance following equity issues. We include NSI into
our tests to examine whether the NSI effect can be
explained by g-theory with investment frictions.

Abnormal corporate investment, ACI. Following Titman,
Wei, and Xie (2004 ), we measure ACI used for the portfolio
formation year t as ACl,_1=3CE._1/(CE;_5+CE; 3+
CE;_4)—1, in which CE;_ is capital expenditures (Compu-
stat annual item CAPX) divided by sales (item SALE) for
the fiscal year ending in calendar year t—1. The prior
three-year moving average of capital expenditures is
designed to project the benchmark level of investment
for the fiscal year t—1. An ACI value greater than zero
indicates that the past fiscal year’s investment is greater
than the average over the prior three years. In this sense,
ACI can be interpreted as a measure of abnormal
investment. Titman, Wei, and Xie (2004) show that firms
with high ACI values earn significantly lower average
returns than firms with low ACI values, and they interpret
the evidence as suggesting that “investors tend to under-
react to the empire building implications of increased
investment expenditures” (p. 677). We use ACI in our tests
to see whether the negative ACI-return relation can be
interpreted as an investment effect consistent with
g-theory.

Net operating assets, NOA. Hirshleifer, Hou, Teoh, and
Zhang (2004) show that the ratio of net operating assets
scaled by lagged total assets strongly predicts cross-
sectional returns with a negative slope. Net operating
assets measure the cumulation over time of the difference
between net operating income (accounting-value added)
and free cash flow (cash-value added). Hirshleifer,
Hou, Teoh, and Zhang (2004) argue that an accumulation
of accounting earnings without a commensurate
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accumulation of free cash flows casts doubt on the
sustainability of future profitability. In addition, investors
have limited attention and fail to discount for this
unsustainability. As such, high NOA firms are overvalued
and should earn negative long-run abnormal returns, and
low NOA firms are undervalued and should earn positive
long-run abnormal returns.

We ask whether g-theory explains the negative NOA-
return relation. Hirshleifer, Hou, Teoh, and Zhang (2004)
show that the cumulative difference between operating
income and free cash flow (NOA) equals the sum of the
cumulative difference between operating income before
depreciation and operating cash flow (cumulative operat-
ing accruals) and the cumulative investment. The latter
results from fixed capital investing activities; the former
from working capital investing activities (e.g., Fairfield,
Whisenant, and Yohn, 2003). Wu, Zhang, and Zhang
(2010) show that controlling for investment-to-assets
substantially reduces the predictive power of NOA for
future returns and interpret the evidence as consistent
with g-theory.

We examine whether the NOA effect varies with
investment costs. This test is more stringent because the
g-theory prediction based on investment costs is not
likely to hold under alternative (e.g., behavioral) explana-
tions. Following Hirshleifer, Hou, Teoh, and Zhang (2004),
we define NOA as OA—OL scaled by lagged total assets
(Compustat annual item AT). OA is operating assets: total
assets minus cash and short-term investment (item CHE).
OL is operating liabilities: TA—STD —LTD — MI—PS—CE, in
which TA is total assets, STD is debt included in current
liabilities (item DLC), LTD is long-term debt (item DLTT),
MI is minority interests (item MIB), PS is preferred stocks
(item PSTK), and CE is common equity (item CEQ).

3.3. Proxies for limits-to-arbitrage

We employ two proxies from Ali, Hwang, and
Trombley (2003): idiosyncratic volatility and dollar trad-
ing volume. Stocks with high idiosyncratic volatility or
low trading volume are more costly to arbitrage than
stocks with low idiosyncratic volatility or high trading
volume, respectively.

Idiosyncratic volatility. Because arbitrage strategies are
not diversified, arbitrageurs must take idiosyncratic
volatility without being compensated with higher
expected returns. As such, high idiosyncratic volatility
implies that arbitrage is more costly and limited, and low
idiosyncratic volatility implies that arbitrage is less costly
and limited. We regress daily stock returns on a value-
weighted market portfolio over a maximum of 250 days
ending on June 30 of year t and calculate idiosyncratic
volatility as the standard deviation of the residuals. At the
end of June of each year t, we sort all firms into terciles on
their idiosyncratic volatilities using the breakpoints for all
public firms traded on NYSE, Amex, and Nasdaq. We
assign firms in the low idiosyncratic volatility tercile to
the low limits-to-arbitrage subsample and firms in the
high idiosyncratic volatility tercile to the high limits-to-
arbitrage subsample.

Dollar trading volume. When stocks are mispriced,
transaction costs limit the extent to which arbitrageurs
can exploit the trading opportunities to eliminate the
mispricing. If stocks are heavily traded, trades are more
likely to be completed quickly and are less likely to have
adverse price impact. If stocks are thinly traded, trades are
less likely to be completed quickly and are more likely to
have adverse price impact. Arbitrages are more limited for
stocks with low trading volume than for stocks with high
trading volume.

Dollar trading volume is the annual trade volume in a
firm’s shares from July 1 of year t—1 to June 30 of year t.
At the end of each June, we compute dollar volume for
each firm as the sum of the last 12 months’ daily dollar
volume, which is the product of share volume and daily
closing price from CRSP. At the end of June of each year ¢,
we sort all firms into terciles based on trading volume on
June 30 of year t using the breakpoints for all public firms
traded on NYSE, Amex, and Nasdaq. We assign firms in the
low trading volume tercile to the high limits-to-arbitrage
subsample and firms in the high trading volume tercile to
the low limits-to-arbitrage subsample.

4. Empirical results

Section 4.1 presents descriptive statistics, Section 4.2
tests the investment frictions hypothesis, and Section 4.3
examines the incremental effect of investment frictions
relative to limits-to-arbitrage.

4.1. Descriptive analysis

Table 1 reports descriptive statistics. To alleviate the
effect of outliers, we winsorize all variables at 1% and 99%
before including them in our tests. From Panel A, the asset
size distribution is highly skewed toward small firms. The
median asset size is 85.5 million dollars, but the mean
asset size is almost 10 times larger at 846.1 million
dollars. The payout ratio has a mean of 0.14, a median of
0.04, and a standard deviation of 0.27. (In calculating
these descriptive statistics, we do not include firm-year
observations with negative earnings but positive
distributions.) We define the bond rating dummy to take
the value of one when firms report positive but unrated
public debt and zero otherwise. On average, 53% of firms
belong to the more constrained group per the bond rating
criterion.

We also calculate pairwise cross-sectional Spearman’s
rank correlations for each year and report time series
averaged correlations. From Panel B, the correlations are
0.45 between asset size and payout ratio, —0.37 between
asset size and bond rating dummy, and —0.21 between
payout ratio and bond rating dummy. Evaluated with time
series standard errors, all the correlations are significant
at the 1% level. The evidence suggests that, sensibly, small
asset firms are more likely to have low payout ratios and
unrated public debt issues than big asset firms and that
firms with low payout ratios are more likely to have
unrated public debt than firms with high payout ratios.



Table 1
Descriptive statistics (July 1963-December 2008).

Asset size (in millions of dollars) is book assets (Compustat annual item AT). The payout ratio is total distributions including dividends for preferred stocks (item DVP), dividends for common stocks (item DVC),
and share repurchases (item PRSTKC) divided by operating income before depreciation (item OIBDP). We do not calculate the payout ratios for firms with negative earnings but positive distributions. We retrieve
data on firms’ bond ratings from Standard & Poor’s and categorize those firms that never had their public debt rated during our sample period as financially constrained (d(rating)=1). Observations from those
firms are only assigned to the constrained subsample in years when the firms report positive debt. The financially unconstrained subsample contains those firms whose bonds have been rated during the sample
period (d(rating)=0). We regress daily stock returns on a value-weighted market portfolio over a maximum of 250 days ending on June 30 of year t and calculate idiosyncratic volatility (Ivol) as the standard
deviation of the residuals, in monthly percent. Dollar trading volume (Dvol) is the annual volume of trade in a firm’s shares from July 1 of year t—1 to June 30 of year t, in billions of dollars. At the end of each June,
we compute dollar volume for each firm as the sum of last 12 months’ daily dollar volume, which is the product of share volume and daily closing price from the Center for Research in Security Prices.
Investment-to-assets is the annual change in gross property, plant, and equipment (Compustat annual item PPEGT) plus the annual change in inventories (item INVT) divided by the lagged book value of assets
(item AT). Asset growth (AA/A) is the change in total assets (item AT) divided by lagged total assets. Investment growth (AI/I) is the growth rate of capital expenditure (item CAPX). Net stock issues (NSI) are the
natural log of the ratio of the split-adjusted shares outstanding at the fiscal year-end in t—1 divided by the split-adjusted shares outstanding at the fiscal year-end in t— 2. The split-adjusted shares outstanding is
Compustat shares outstanding (item CSHO) times the Compustat adjustment factor (item AJEX). Abnormal corporate investment (ACI) is 3CE; _1/(CE;_,+CE;_3+CE;_4)—1, in which CE,_ is capital expenditures
(item CAPX) scaled by its sales (item SALE) for the fiscal year ending in calendar year t — 1. Net operating assets (NOA) are operating assets minus operating liabilities, in which operating assets are calculated as
total assets (item AT) minus cash and short-term investment (item CHE). Operating liabilities are total assets minus debt included in current liabilities (item DLC) minus long-term debt (item DLTT) minus
minority interests (item MIB) minus preferred stocks (item PSTK) minus common equity (item CEQ). We winsorize all variables at 1% and 99%. In Panel A we calculate the statistics by pooling all the time series
and cross-sectional observations. In Panel B we calculate the pairwise cross-sectional Spearman’s rank correlations for each year and report time series averaged correlations. The significance of a given
correlation (calculated with time series standard errors) is indicated with by * and *+, denoting 5% and 1% significance levels, respectively.

Panel A: Descriptive statistics

Mean Standard Minimum 25% Median 75% Maximum
deviation

Asset size 846.07 2,974.09 1.13 23.35 85.50 383.42 4,4319.00
Payout ratio 0.14 0.27 0.00 0.00 0.04 0.18 3.12
d(rating) 0.53 0.50 0.00 0.00 1.00 1.00 1.00
Ivol 15.51 9.67 3.05 8.70 13.02 19.49 76.31
Dvol 1.20 6.08 0.00 0.00 0.03 0.26 121.35
1/A 0.06 0.22 -0.49 —-0.01 0.05 0.13 2.37
AA/A 0.12 0.45 -0.63 -0.04 0.07 0.19 7.08
Al/l 033 1.64 —0.98 —0.46 0.00 0.50 19.00
NSI 0.03 0.13 -0.23 0.00 0.00 0.03 1.13
ACl -0.20 0.87 -0.99 —0.88 -0.33 0.10 6.88
NOA 0.64 0.39 —0.46 0.46 0.69 0.84 4.03

Panel B: Cross correlations (Spearman)

Asset size Payout ratio d(rating) Ivol Dvol I/A AA/A Al/l NSI Acl NCO
Asset size 1
Payout ratio 0.45* 1
d(rating) -037** -0.21** 1
Ivol -0.64** —0.55** 0.29** 1
Dvol 0.73** 027+ -0.35*" -0.39** 1
1/A 0.13** 0.00 —0.01 -0.10** 021** 1
AA/A 0.17* 0.02** —0.05"" -0.14** 0.26** 0.73** 1
Al/l 0.12** 0.05** -0.02*" -0.10*" 0.19** 0.54** 0.47** 1
NSI 0.10** -0.15** -0.04** 0.02 0.22** 0.39** 047 0.30** 1
ACl 0.29** 0.23* —0.08*" -0.25** 0.26** 031" 0.23** 0.54** 0.14** 1

NOA 0.24** 0.09** 0.00 —0.18** 0.16** 0.56** 0.60** 0.34** 0.36** 0.22** 1

y0¢€
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Stock returns at the firm level are volatile. The mean
idiosyncratic volatility is 15.5% per month, and the
median is 13%. Similar to asset size, dollar trading volume
is skewed. The mean volume is 1.2 billion dollars, and the
median is only 0.03 billion. The two limits-to-arbitrage
proxies have a correlation of —0.39, which is significant at
the 1% level. Stocks with high idiosyncratic volatilities
have low trading volumes, and stocks with low idiosyn-
cratic volatilities have high trading volumes.

The proxies for limits-to-arbitrage are correlated with
those for financing constraints. In June of each year t we
calculate the pairwise cross-sectional Spearman’s correla-
tions between limits-to-arbitrage proxies measured at the
end of June of year t and financing constraints proxies for
the fiscal year ending in calendar year t—1, and we
compute time series average correlations. Small asset
firms have high idiosyncratic volatility and low dollar
trading volume. The correlations are —0.64 between asset
size and idiosyncratic volatility and 0.73 between asset
size and trading volume. Low payout firms have high
idiosyncratic volatility and low trading volume. The
correlations are —0.55 between payout ratio and idiosyn-
cratic volatility and 0.27 between payout ratio and trading
volume. Firms without bond ratings have high idiosyn-
cratic volatility and low trading volume. The correlations
are 0.29 between the rating dummy and idiosyncratic
volatility and —0.35 between the rating dummy and
trading volume. All these correlations are significant at
the 1% level.

These correlations make sense. Asset size, which is a
standard financing constraints measure, can indicate
trading frictions. Firms with small asset size are more
likely to be thinly traded with lower liquidity and higher
transactions costs than firms with big asset size. Further,
small asset firms are more likely to be poorly diversified
in their operating, investing, and financing activities and
have higher idiosyncratic volatilities than big asset firms.
Firms with high trading volume are more likely to have
easy access to equity markets and low equity financing
costs than firms with low trading volume. Finally, to the
extent that idiosyncratic volatility affects firms’ default
probabilities a 1a Merton (1974), firms with high idiosyn-
cratic volatilities are more likely to have high default
probabilities and high costs of debt financing than firms
with low idiosyncratic volatilities.

Turning to the investment measures, Panel A of Table 1
shows that investment-to-assets, I/A, has a mean of 0.06
per annum and a standard deviation of 0.22. Asset growth,
AA/A, has a mean of 0.12 per annum and a standard
deviation of 0.45. The distribution of investment growth is
skewed. The mean is 0.33, but the median is zero. The
mean of abnormal corporate investment, ACI, is —0.20
and the median is —0.33. Because ACI is defined as the
growth rate of investment-to-sales relative to its prior
three-year moving average, the evidence suggests strong
mean reversion in real investment at the firm level.
Finally, the distribution of net operating assets is largely
symmetric. Its mean is 0.64, which is close to the median
of 0.69.

From Panel B, the six anomaly variables are correlated.
The pairwise Spearman correlations vary from 0.14 to

0.73 and are all significant at the 1% level. In particular,
investment-to-assets is highly correlated with the other
measures: 0.73 with asset growth, 0.54 with investment
growth, 0.39 with net stock issues, 0.31 with abnormal
corporate investment, and 0.56 with net operating assets.
NSI has a low correlation of 0.14 with abnormal corporate
investment but high correlations of 0.47, 0.30, and 0.36
with asset growth, investment growth, and net operating
assets, respectively.

4.2. Testing the investment frictions hypothesis

For each month from July of year t to June of year t+1,
we estimate Fama and MacBeth (1973) cross-sectional
regressions of monthly percent excess returns on a given
investment-related anomaly variable for the fiscal year
ending in the calendar year t—1. We run the regressions
in the full sample as well as in extreme subsamples split
by a given financing constraints proxy, and we compare
the slopes on the anomaly variable across the extreme
subsamples. We split the sample in June of each year t
based on a given financing constraints proxy for the fiscal
year ending in calendar year t—1. Under the g-theory
logic, the slopes should be negative and greater in
magnitude in the more constrained subsample than in
the less constrained subsample.

4.2.1. Benchmark estimation

Table 2 reports the detailed results. All six anomaly
variables predict returns negatively in the full sample. All
variables except for abnormal corporate investment, ACI,
have slopes that are significant at the 1% level. In
particular, investment-to-assets has a slope of —0.69
that is more than 4.9 standard errors from zero. Asset
growth has a slope of —0.74 that is more than 8.0
standard errors from zero. Relative to the other variables,
ACT's predictive power is substantially weaker. Its slope is
—0.05, which is within 1.6 standard errors from zero.

Turning to our key tests, Table 2 shows that the slopes
of investment-to-assets are significantly higher in magni-
tude in the more constrained subsample than in the less
constrained subsample. From Column 1, the I/A slope is
—0.85 in the small asset tercile and is —0.33 in the big
asset tercile. The difference of —0.52 is more than 2.1
standard errors from zero (we use the time series
standard error of the slope difference). Using the payout
ratio as the financing constraints proxy yields largely
similar results. The I/A slope is —0.93 in the low payout
ratio tercile and —0.39 in the high payout ratio tercile.
The difference of —0.54 is more than 2.4 standard errors
from zero. Finally, the I/A slope is —0.86 in the subsample
without bond ratings and —0.47 in the subsample with
bond ratings. The difference of —0.39 is more than 2.4
standard errors from zero.

The asset growth results are weaker than those for
investment-to-assets. Column 2 shows that the AA/A
slope is —0.83 in the small asset tercile and is —0.47 in
the big asset tercile. The difference of —0.36 is more than
2.3 standard errors from zero. However, using payout
ratio yields insignificant difference in the AA/A slope
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Table 2

Slopes from Fama and MacBeth (1973) cross-sectional regressions of monthly percent excess returns on anomaly variables in the full sample and
subsamples split by financing constraints measures (July 1963-December 2008, 558 months).

For each month from July of year t to June of year t+1, we estimate Fama and MacBeth cross-sectional regressions of monthly percent excess returns on
a given anomaly variable for the fiscal year ending in calendar year t—1 in the full sample as well as in extreme subsamples split by a given financing
constraints measure. We split the sample in June of each year t based on a given constraints proxy for the fiscal year ending in calendar year t—1. I/A is
investment-to-assets, AA/A is asset growth, Al/I is investment growth, NSI is net stock issues, ACI is abnormal corporate investment, and NOA is net
operating assets. See the caption of Table 1 for detailed variable definitions. For firms with negative earnings but positive payouts, we do not calculate
their payout ratios but categorize them as financially least constrained (along with firms with high payout ratios). We report the slopes and their Fama
and MacBeth t-statistics (in parentheses). We also report the t-statistics (in brackets) testing that a given slope is equal across extreme subsamples split
by a given financing constraints measure. The time series average numbers of firms in the cross section for the full sample and for different subsamples
are in curly brackets. Excess returns are the difference between portfolio returns and one-month Treasury bill rate (from Kenneth French’s website).

I/A AA/A AlJl NSI ACl NOA

(1) (2) (3) (4) (5) (6)

Full sample —0.69 -0.74 —0.08 —1.87 —0.05 —0.51
(—4.92) (—8.28) (—5.45) (—6.98) (-1.58) (-5.05)

{3,148} {3,148} {3,148} {3,148} {3,117} {3,148}

Small asset size -0.85 —0.83 —0.09 -1.27 —0.04 —0.47
(-5.12) (-7.82) (—5.03) (-3.78) (-0.97) (-3.70)

{1,020} {1,020} {1,020} {1,020} {1,010} {1,020}

Big asset size -0.33 —-0.47 —0.05 —1.50 0.02 —0.45
(—1.63) (—3.53) (-1.37) (—4.70) (0.44) (—5.01)

{1,050} {1,050} {1,050} {1,050} {1,040} {1,050}

Small-minus-big [-2.13] [-2.39] [-0.87] [0.58] [—1.00] [-0.11]
Low payout ratio —-0.93 —0.81 -0.10 —-1.39 —0.08 —-0.50
(—5.63) (-7.81) (—4.81) (—4.50) (-2.10) (—4.45)

{1,269} {1,269} {1,269} {1,269} {1,259} {1,269}

High payout ratio -0.39 —0.66 —0.06 -2.20 -0.03 —0.56
(—2.00) (-5.17) (-2.49) (-6.07) (-0.83) (—4.24)

{1,146} {1,146} {1,146} {1,146} {1,136} {1,146}

Low-minus-high [—2.49] [—1.24] [-1.37] [1.91] [-1.22] [0.52]
Without bond rating —0.86 —0.90 -0.10 -1.86 -0.03 —0.50
(=5.95) (—9.44) (-6.11) (—6.04) (-0.94) (—4.86)

{1,683} {1,683} {1,683} {1,683} {1,671} {1,683}

With bond rating -047 —0.50 —0.05 -1.82 -0.09 —0.51
(-2.61) (—4.43) (-2.30) (-5.85) (-2.30) (—4.23)

{1,466} {1,466} {1,466} {1,466} {1,446} {1,466}

Without-minus-with [—2.49] [-3.77] [—2.41] [-0.11] [1.61] [0.21]

across extreme terciles. The slope is —0.81 in the low
payout ratio tercile and is —0.66 in the high payout ratio
tercile. The difference of —0.15 is within 1.3 standard
errors from zero. Using bond rating dummy to measure
investment frictions yields more significant results.
The AA/A slope is —0.90 in the subsample without
bond ratings and —0.50 in the subsample with bond
ratings, and the difference is more than 3.7 standard
errors from zero.

Although going in the right direction, the investment
growth results are substantially weaker than those for
investment-to-asset and asset growth. From Column 3,
the difference in the AI/I slope is only —0.04 across the
small and big asset size terciles, and it is within 0.9
standard errors from zero. The slope difference is —0.04
across the low and high payout ratio terciles, and it is
within 1.4 standard errors from zero. The slope difference
is —0.05 across the subsamples with and without bond
ratings, but the difference is more precisely estimated and
is more than 2.4 standard errors from zero.

The remaining columns of Table 2 show that the net
stock issues, abnormal corporate investment, and net
operating assets effects do not conform to the prediction
of g-theory with investment frictions. Their slopes from
cross-sectional regressions do not differ significantly
across extreme financing constraints subsamples. From

Column 4, the sign of the NSI slope difference even goes in
the wrong direction across asset size and payout ratio
terciles. The NSI slope is —1.27 in the small asset tercile,
but —1.50 in the big asset tercile, although the difference
is within 0.6 standard errors from zero. The NSI slope is
—1.39 in the low payout ratio tercile, but —2.20 in the
high payout ratio tercile, and the difference is even
marginally significant (t=1.91). Although the sign of the
NSI slope goes in the right direction across bond ratings
subsamples, it is only —0.04, and is within 0.2 standard
errors from zero.

The NSI results show that although the full-sample
evidence is supportive of the prediction of g-theory with
investment frictions, the prediction is not supported in
the tests based on subsamples. As such, it is important to
go beyond the sign and the significance of the expected
return-investment relation as in most prior studies to
examine the deeper prediction about investment frictions
in drawing inferences about whether g-theory explains
the investment-related anomalies.

From Column 5, the ACI slope is —0.04 in the small
asset tercile and 0.02 in the big asset tercile. However, the
difference of —0.06 is only one standard error from zero.
The difference in the ACI slope between the low and high
payout ratio terciles stands at —0.05, which is within 1.3
standard errors from zero. The evidence with bond ratings



D. Li, L. Zhang / Journal of Financial Economics 98 (2010) 297-314 307

goes in the wrong direction from the prediction of
g-theory with investment frictions. The ACI slope is
—0.03 in the more constrained subsample but is —0.09
in the less constrained subsample, although the difference
is within 1.7 standard errors from zero. From Column 6,
the NOA slope differences across the extreme subsamples
are all within 0.6 standard errors from zero. The sign of
the slope difference goes in the right direction across
extreme asset size terciles, but it goes in the wrong
direction across subsamples split by payout ratio and by
bond ratings.

In summary, the subsample test results are supportive
of g-theory with investment frictions only for the
investment-to-assets and asset growth anomalies. The
evidence is important because it shows that our tests have
enough power to reject the null hypothesis of no
differences across extreme financing constraints subsam-
ples. However, the tests do not support the g-theory
explanation for the investment growth, net stock issues,
abnormal corporate investment, or net operating assets
anomalies. These results cast doubt on inferences from
extant g-theory tests that focus only on the sign and the
significance of the relations between average returns and
these anomaly variables.

4.2.2. Alternative specifications

We report two alternative specifications of our test
design in Table 2. First, we examine the impact of the
January effect, which means a general increase in stock
prices in January. The January effect is often attributed to
buying activities that follow the drop in prices in
December when investors sell to create tax losses and
offset capital gains. Keim (1983) shows that much of the
abnormal returns to small firms occurs in January.
However, we are not aware of any prior attempt to
examine whether the investment-related anomalies are
driven by the January effect.

In Panel A of Table 3 we rerun the tests from Table 2
but without January returns. The first two rows of the
panel show that the ACI effect of Titman, Wei, and Xie
(2004) is driven entirely by the January effect. Without
returns in January, the ACI slope is close to zero in cross-
sectional regressions and is within 0.1 standard errors
from zero. The slopes for the other investment-related
anomaly variables are somewhat reduced in magnitude,
but all of them remain at least 3.7 standard errors from
zero. In particular, the I/A slope reduces from —0.69 to
—0.55, which is still more than 3.9 standard errors from
zero. The NSI slope even increases in magnitude from
—1.87 to —2.02, and it is more than 7.6 standard errors
from zero.

Dropping January returns weakens the evidence in
favor of g-theory as an explanation of the relation
between returns and I/A. The first column of Panel A
shows that the I/A slope is —0.72 in the small asset tercile
and —0.30 in the big asset tercile. The difference of —0.42
is within 1.7 standard errors from zero. The I/A slope is
—0.68 in the low payout ratio tercile and —0.32 in the
high payout ratio tercile. The difference of —0.36
also is within 1.7 standard errors from zero. And the I/A
slope is —0.74 in the subsample without bond

ratings and —0.27 in the subsample with bond ratings.
The difference of —0.47 is more than 3.0 standard errors
from zero.

Controlling for the January effect does not seem to
affect the evidence concerning g-theory with investment
frictions for the asset growth anomaly. From the second
column of Panel A, the AA/A slope is —0.73 in the small
asset tercile and —0.39 in the big asset tercile. The
difference of —0.34 is more than 2.1 standard errors from
zero. The AA/A slope is —0.64 in the low payout ratio
tercile and —0.47 in the high payout ratio tercile. The
difference of —0.17 is within 1.5 standard errors from
zero. And the AA/A slope is —0.77 in the subsample
without bond ratings and —0.35 in the subsample with
bond ratings. The difference of —0.42 is more than 3.9
standard errors from zero.

From the third column of Panel A, dropping January
returns weakens the differences in the investment growth
slope across extreme financing constraints subsamples to
insignificant levels. The Al/I slope differs across subsam-
ples with and without bond ratings by —0.04, although it
is marginally significant (t= —1.87). The slope differences
are even smaller in magnitude across extreme asset size
and payout ratio terciles, and they are both within 0.5
standard errors from zero. The remaining columns of
Panel A show that, as in the benchmark estimation, the
NSI, ACI, and NOA slopes do not differ significantly across
extreme financing constraints subsamples.

In the second alternative specification, we ask how the
results change after we control for the standard determi-
nants of cross-sectional returns such as size, book-to-
market, and momentum. We measure size as the log
market capitalization at the end of June of year t, book-to-
market as the log book equity for the fiscal year ending in
t—1 minus the log market equity at the end of December
of year t—1, and momentum as the log prior six-month
returns (with one-month gap between the holding period
and the current month). A caveat with these controls is
that they are correlated with real investment. Small firms,
growth firms, and momentum winners tend to invest
more than big firms, value firms, and momentum losers.
These correlations can make the interpretation of any
individual slope in multiple regressions less straightfor-
ward than the slope in univariate regressions. However, it
remains informative to check to what extent our
basic inferences are sensitive to the inclusion of these
standard controls.

Panel B of Table 3 reports the detailed results. January
returns are included in these tests. Including the standard
controls reduces the ACI effect to insignificance. Its
regression slope of —0.02 is within 1.1 standard errors
from zero. The five other anomaly variables retain strong
predictive power for cross-sectional returns. All the slopes
are at least 3.8 standard errors from zero. More important,
including the standard controls weakens the evidence in
support of g-theory from the benchmark estimation. In
particular, the I/A slope is —0.62 in the low payout ratio
tercile and —0.27 in the high payout ratio tercile. The
difference of —0.35 is within 1.8 standard errors from
zero. In contrast, this slope difference is —0.54 (t= —2.49)
in the benchmark estimation. The AA/A slope is —0.57 in
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Table 3
Slopes from Fama and MacBeth (1973) cross-sectional regressions of monthly percent excess returns on anomaly variables in the full sample and
subsamples split by financing constraints measures, robustness checks.

In Panel A for each month from July of year t to June of year t+1 (except for January of year t+1) we run cross-sectional regressions of monthly percent
excess returns on a given anomaly variable for the fiscal year ending in calendar year t—1 in the full sample as well as in extreme subsamples split by a
given financing constraints measure. We split the sample in June of each year t based on a given constraints proxy for the fiscal year ending in calendar
year t— 1. In Panel B the regressions are run with January returns as well as three controls: the log market capitalization at the end of June of year ¢, the log
book-to-market equity as the log book equity for the fiscal year ending in t—1 minus the log market equity at the end of December of year t—1, and the
log prior six-month returns (with one-month gap between the holding period and the current month). We report the slopes and their Fama and MacBeth
t-statistics (in parentheses), as well as the t-statistics (in brackets) testing that a given slope is equal across extreme subsamples split by a given financing
constraints measure. For firms with negative earnings but positive payouts, we do not calculate their payout ratios but categorize them as financially least
constrained (along with firms with high payout ratios). Excess returns are the difference between portfolio returns and one-month Treasury bill rate
(from Kenneth French’s website). I/A is investment-to-assets, AA/A is asset growth, Al/I is investment growth, NSI is net stock issues, ACI is abnormal
corporate investment, and NOA is net operating assets. See the caption of Table 1 for detailed variable definitions. Book equity is the Compustat book
value of stockholders’ equity (Compustat annual item SEQ), plus balance sheet deferred taxes (item TXDB) and investment tax credit (item ITCI, if
available), minus the book value of preferred stock. Depending on availability, we use redemption (item PSTKRV), liquidation (item PSTKL), or par value
(item PSTK), in that order to estimate the book value of preferred stock. Market equity is price per share times the number of shares outstanding
(SHROUT) from Center for Research in Security Prices.

I/A AA/A Al/l NSI ACl NOA
Panel A: No January returns (July 1963-December 2008, 513 months)
Full sample —0.55 —0.60 —0.09 —2.02 0.00 -0.39
(-3.91) (—6.82) (—6.24) (—7.66) (0.09) (-3.79)
Small asset size —0.72 -0.73 —0.08 -1.79 —0.03 —0.44
(—4.40) (—6.95) (—4.80) (—5.82) (-0.62) (-3.35)
Big asset size —-0.30 -0.39 —0.06 -1.62 0.05 —-0.44
(—1.45) (—2.95) (-1.61) (—4.94) (1.12) (-4.72)
Small-minus-big [-1.63] [—-2.16] [—0.43] [—0.42] [-1.22] [0.06]
Low payout ratio —0.68 —0.64 —-0.09 —-1.59 —-0.04 —-043
(-4.22) (-6.33) (-4.33) (-5.27) (-1.09) (-3.72)
High payout ratio -0.32 -0.47 —0.08 —2.22 —0.01 -0.37
(—1.65) (-3.76) (-3.51) (-6.21) (-0.22) (-2.77)
Low-minus-high [—1.64] [-1.41] [-0.21] [1.50] [-0.77] [—-0.50]
Without bond rating -0.74 -0.77 -0.10 -2.11 0.01 -0.42
(-5.12) (-8.12) (—6.40) (-6.97) (0.28) (—4.05)
With bond rating -0.27 -0.35 —0.06 —1.88 —0.03 —0.34
(-1.51) (-3.16) (—2.98) (—6.06) (-0.73) (-2.73)
Without-minus-with [—3.04] [—3.94] [-1.87] [—0.68] [1.03] [-0.93]
Panel B: Controlling for size, book-to-market, and prior returns
(July 1963-December 2008, 558 months)
Full sample —0.49 —0.52 —0.07 -1.28 —0.02 —0.56
(-3.84) (-6.43) (-5.22) (—5.66) (-1.03) (-6.83)
Small asset size —0.68 -0.57 -0.07 —0.88 —-0.07 -0.67
(—4.28) (—5.65) (—-4.13) (—2.84) (-1.81) (—5.54)
Big asset size -0.20 -0.38 —0.04 —-1.38 0.02 —-0.43
(-1.06) (—3.25) (-1.33) (—4.94) (0.59) (—4.85)
Small-minus-big [—2.14] [-1.32] [—0.58] [1.39] [—1.68] [-1.71]
Low payout ratio —0.62 —-0.51 —0.06 —0.89 —0.05 —-0.51
(—4.43) (—6.06) (-3.73) (-3.19) (-1.57) (-5.03)
High payout ratio -027 —045 —0.06 -1.73 —0.01 —0.63
(-1.56) (—3.83) (=2.79) (—5.83) (-0.38) (-6.24)
Low-minus-high [-1.76] [-0.50] [-0.17] [2.35] [-0.95] [1.08]
Without bond rating —0.65 —0.65 —0.08 -1.28 —-0.01 -0.59
(-4.80) (=7.57) (-5.23) (—4.86) (-0.37) (-6.36)
With bond rating -0.23 -0.29 —0.05 -1.28 —0.05 —0.44
(-1.42) (-2.74) (-2.41) (-4.79) (-1.49) (—4.85)
Without-minus-with [—2.83] [-3.55] [-1.25] [—0.03] [1.08] [-1.80]

the small asset tercile and —0.38 in the big asset tercile.
The difference of —0.19 is within 1.4 standard errors from
zero. In contrast, this slope difference is —0.36 (t=—2.39)
in the benchmark estimation. Other results involving I/A
and AA/A are largely similar to those in the benchmark
estimation.

Panel B shows that controlling for standard cross-
sectional determinants of returns does not enhance the
ability of g-theory to explain the other anomalies. In
particular, the AI/I slope is —0.08 in the subsample

without bond ratings and —0.05 in the subsample with
bond ratings. The difference is within 1.3 standard errors
from zero. In contrast, this difference is —0.05, which is
more than 2.4 standard errors from zero in the benchmark
estimation. The NSI slope even goes in the wrong
direction. The slope is —0.89 in the low payout ratio
tercile but —1.73 in the high payout ratio tercile. The
difference of 0.84 is more than 2.3 standard errors from
zero. All the other results are largely similar to those in
the benchmark estimation.
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In summary, although the estimates generally go in the
right direction, the empirical support for the g-theory
explanation for the investment-to-assets and asset
growth anomalies is not robust to controlling for the
January effect and to including the standard controls such
as size, book-to-market, and momentum in cross-sec-
tional regressions. As in the benchmark estimation, the
investment growth, net stock issues, abnormal corporate
investment, and net operating assets anomalies are not
supportive of the explanation based on g-theory with
investment frictions.

4.3. Does q-theory with investment frictions have
explanatory power for anomalies above and beyond limits-
to-arbitrage?

Having shown the weak support of the g-theory
explanation for the I/A and AA/A anomalies and the
absence of support for the other anomalies, we turn our
attention to limits-to-arbitrage. We address four related
questions. First, do the anomalies vary in magnitude
across subsamples split by proxies for limits-to-arbitrage?
Second, could the lack of support for g-theory be due to
limits-to-arbitrage? Intuitively, mispricing associated
with limits-to-arbitrage can drive a wedge between
expected returns and average future realized returns. This
wedge can cause the empirical tests to fail even if the
g-theory prediction holds for expected returns. We
address this question by contrasting the significance
of the g-theory prediction in the subsample with low
limits-to-arbitrage (less contaminated by mispricing) to
that in the subsample with high limits-to-arbitrage (more
contaminated by mispricing).

Third, is the weak evidence supporting the g-theory
explanation for the I/A and AA/A effects robust to

Table 4

controlling for limits-to-arbitrage as the alternative
explanation? We address this question by checking
whether the evidence in support of g-theory holds for
I/A and AA/A regardless of whether proxies for limits-to-
arbitrage are high or low. Fourth, is the support of the
limits-to-arbitrage hypothesis robust to controlling for
g-theory with investment frictions as the alternative
explanation? We address this question by checking
whether the evidence in support of limits-to-arbitrage
holds regardless of whether proxies for investment
frictions are high or low.

4.3.1. Do limits-to-arbitrage explain the investment-related
anomalies?

At the end of June of each year t we split the sample
into terciles based on idiosyncratic volatility and, inde-
pendently, on the dollar trading volume. Unlike financing
constraints proxies that are available only at the last fiscal
year-end, we use information up to the end of June of year
t to calculate the two limits-to-arbitrage proxies. Within
each subsample, we run cross-sectional regressions of
monthly percent excess returns from July of year t to June
of year t+1 on a given investment-related anomaly
variable for the fiscal year ending in calendar year t—1.
We test whether the slope of the anomaly variable varies
across the extreme limits-to-arbitrage terciles.

From Table 4, the difference in the I/A slope is —0.91
(t=—4.20) across the idiosyncratic volatility subsamples
and is —0.73 (t=-2.75) across the trading volume
terciles. The difference in the AA/A slope is —0.83
(t=—5.65) across the idiosyncratic volatility terciles and
is —0.44 (t=-2.19) across the trading volume terciles.
The difference in the NOA slope is —0.32 (t= —2.39) across
the idiosyncratic volatility terciles and is —0.33
(t=—2.19) across the trading volume terciles. In

Slopes from Fama and MacBeth (1973) cross-sectional regressions of monthly percent excess returns on anomaly variables in the subsamples split by

limits-to-arbitrage measures (July 1963-December 2008, 558 months).

For each month from July of year t to June of year t+1, we estimate Fama and MacBeth cross-sectional regressions of monthly percent excess returns on
a given anomaly variable for the fiscal year ending in calendar year t—1 in the extreme subsamples (terciles) split by a given limits-to-arbitrage measure.
We split the sample at the end of June of each year t based on a given proxy measured using data up to June of year t. Ivol denotes idiosyncratic volatility
and Dvol is dollar trading volume. I/A is investment-to-assets, AA/A is asset growth, Al/I is investment growth, NSI is net stock issues, ACI is abnormal
corporate investment, and NOA is net operating assets. See the caption of Table 1 for detailed variable definitions. We report the slopes and their Fama
and MacBeth t-statistics (in parentheses). We also report the t-statistics (in brackets) testing that a given slope is equal across extreme terciles split by a
given limits-to-arbitrage measure. The time series average numbers of firms in the cross section for the full sample and for different subsamples are in
curly brackets. Excess returns are in excess of one-month Treasury bill rate (from Kenneth French’s website).

I/A AA/A AlJI NsI Acl NOA

(1) (2) (3) (4) (5) (6)

Low Ivol —0.10 —0.16 —0.02 —1.49 —0.01 —-0.29
(—0.56) (-1.24) (—0.65) (-4.98) (-0.32) (-3.61)

{1,052} {1,052} {1,052} {1,052} {1,042} {1,052}

High Ivol —1.01 -0.99 -0.10 —1.54 —0.05 —-0.61
(—5.95) (-9.57) (—5.10) (—5.07) (-1.25) (—5.06)

{1,021} {1,021} {1,021} {1,021} (1,011} {1,021}

High-minus-low Ivol [—4.20] [-5.65] [-2.72] [-0.11] [-0.77] [-2.39]
Low Dvol —1.18 —0.94 —0.09 —1.82 —0.12 —0.80
(—6.08) (-6.27) (—4.30) (-4.92) (—2.94) (-5.60)

{922} {922} {922} {922} {916} {922}

High Dvol —0.45 —0.50 —0.09 —1.54 —0.02 —0.47
(=2.20) (—3.40) (-2.65) (-4.28) (—0.40) (-3.98)

{954} (954} (954} (954} {948} {954}

Low-minus-high Dvol [—2.75] [-2.19] [-0.02] [-0.61] [-1.79] [-2.19]




310 D. Li, L. Zhang / Journal of Financial Economics 98 (2010) 297-314

addition, the difference in the Al/I slope is significant
across the idiosyncratic volatility terciles but is
insignificant across the trading volume terciles. The
difference in the ACI slope is marginally significant
across the trading volume terciles but is insignificant
across the idiosyncratic volatility terciles. Finally, the
difference in the NSI slope is insignificant across both the
idiosyncratic volatility terciles and across the trading
volume terciles.

In summary, the benchmark estimation finds support
for the limits-to-arbitrage hypothesis for the investment-
to-assets, asset growth, and net operating assets anoma-
lies, but not for the investment growth, abnormal
corporate investment, and net stock issues anomalies.

Table 5 performs two robustness tests for limits-to-
arbitrage proxies using the same test design as in Table 3
for financing constraints proxies. Panel A shows that
dropping January returns does not materially affect the
impact of idiosyncratic volatility on the anomalies. The
differences in the I/A,AA/A,Al/I, and NOA slopes remain
significant at the 5% level. However, controlling for the
January effect reduces the effect of trading volume on all
the anomalies to insignificance. The difference in the I/A

Table 5

slope is within 1.8 standard errors from zero, and the
difference in the AA/A slope is within 0.9 standard errors
across extreme trading volume terciles. In contrast, both
differences are more than 2.2 standard errors from zero in
the benchmark estimation.

Including standard controls such as size, book-to-
market, and momentum into the cross-sectional regres-
sions reduces the impact of idiosyncratic volatility on the
AI/I anomaly and the impact of trading volume on
the NOA anomaly to insignificant levels. From Panel B,
the difference in the AI/I slope across the extreme
idiosyncratic volatility terciles and the difference in the
NOA slope across the extreme trading volume terciles are
both within 1.5 standard errors from zero. Although
somewhat weakened, all the other aspects of the results
remain basically unchanged.

In summary, with idiosyncratic volatility as the proxy
for limits-to-arbitrage, the empirical support for the
mispricing hypothesis is robust for the I/A, AA/A, and
NOA anomalies, but not for AI/I,NSI, and ACI anomalies.
Although generally going in the right direction, the
empirical support for the mispricing hypothesis using
trading volume as the limits-to-arbitrage proxy is not

Slopes from Fama and MacBeth (1973) cross-sectional regressions of monthly percent excess returns on anomaly variables in the subsamples split by
limits-to-arbitrage measures, robustness checks.

In Panel A for each month from July of year ¢ to June of year t+1 (except for January of year t+1) we run cross-sectional regressions of monthly percent
excess returns on a given anomaly variable for the fiscal year ending in calendar year t—1 in extreme subsamples (terciles) split by a given limits-to-
arbitrage measure. We split the sample at the end of June of each year t based on a given proxy measured using data up to June of year t. In Panel B the
regressions are run with January returns as well as three controls: the log market capitalization at the end of June of year ¢, the log book-to-market equity
as the log book equity for the fiscal year ending in t—1 minus the log market equity at the end of December of year t—1, and the log prior six-month
returns (with one-month gap between the holding period and the current month). We report the slopes and their Fama and MacBeth t-statistics (in
parentheses), as well as the t-statistics (in brackets) testing that a given slope is equal across extreme terciles split by a given limits-to-arbitrage measure.
Excess returns are in excess of one-month Treasury bill rate (from Kenneth French’s website). Ivol denotes idiosyncratic volatility and Dvol is dollar
trading volume. I/A is investment-to-assets, AA/A is asset growth, Al/I is investment growth, NSI is net stock issues, ACI is abnormal corporate investment,
and NOA is net operating assets. See the caption of Table 1 for detailed variable definitions. Book equity is the Compustat book value of stockholders’
equity (Compustat annual item SEQ), plus balance sheet deferred taxes (item TXDB) and investment tax credit (item ITCI, if available), minus the book
value of preferred stock. Depending on availability, we use redemption (item PSTKRV), liquidation (item PSTKL), or par value (item PSTK), in that order to
estimate the book value of preferred stock. Market equity is price per share times the number of shares outstanding (SHROUT) from Center for Research in
Security Prices.

I/A AA/A A/l NSI ACl NOA
Panel A: No January returns (July 1963-December 2008, 513 months)
Low Ivol -0.07 —0.06 —0.03 -1.28 —0.01 —0.26
(—0.40) (—0.48) (-1.07) (-4.14) (-0.16) (-3.14)
High Ivol -0.92 -0.89 -0.10 -1.82 —0.03 —0.60
(—5.45) (—8.75) (—5.04) (—6.34) (-0.79) (—4.90)
High-minus-low Ivol [-3.82] [-5.58] [-2.19] [-1.37] [-0.49] [—2.44]
Low Dvol -0.90 —0.67 —0.09 -2.14 —0.06 —0.60
(—4.64) (—4.57) (—4.51) (-6.11) (-1.56) (—-4.14)
High Dvol —0.42 —0.50 -0.10 -1.71 0.01 —0.47
(-1.93) (—3.30) (—2.94) (—4.70) (0.28) (-3.76)
Low-minus-high Dvol [-1.76] [-0.81] [0.28] [-0.95] [-1.35] [—0.86]
Panel B: Controlling for size, book-to-market, and prior returns
(July 1963-December 2008, 558 months)
Low Ivol 0.01 -0.11 —0.03 -1.15 0.00 -0.33
(0.04) (—0.98) (—1.49) (—4.47) (0.14) (—4.34)
High Ivol -0.83 -0.70 —0.08 —0.98 —0.04 —0.71
(=5.17) (-7.28) (—4.08) (-3.31) (-1.09) (-6.07)
High-minus-low Ivol [—4.09] [-4.41] [-1.48] [0.46] [-0.91] [—2.89]
Low Dvol -0.90 -0.73 —0.07 —1.50 —0.07 -0.71
(-5.01) (=5.41) (=3.57) (—4.35) (=217) (—5.58)
High Dvol -0.25 —0.36 -0.07 -1.38 —0.02 —-0.50
(—1.46) (—3.40) (—2.48) (—4.79) (—0.60) (—4.91)
Low-minus-high Dvol [—2.84] [—2.26] [—0.00] [-0.26] [—1.08] [-1.41]
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Time series average numbers of firms in the cross section for the subsamples split jointly by limits-to-arbitrage measures and financing constraints

measures (July 1963-December 2008, 558 months).

We split the full sample by an independent two by two sort on a given limits-to-arbitrage measure and a given financing constraints measure. In June of
each year t we sort firms into two groups based on the median of a given limits-to-arbitrage measure and independently sort firms into two groups
around the median of a given financing constraints measure for the fiscal year ending in calendar year t — 1. Taking intersections partitions the full sample
into four subsamples. The table reports the time series average number of firms in the cross section for each subsample. I/A is investment-to-assets, AA/A
is asset growth, Al/I is investment growth, NSI is net stock issues, ACI is abnormal corporate investment, and NOA is net operating assets. The caption of

Table 1 details the variable definitions.

1/A AA/A Al/I NSI ACl NOA

Panel A: Idiosyncratic volatility (Ivol) as the limits-to-arbitrage proxy
Small asset Low Ivol 397 397 397 397 393 397
High Ivol 1,160 1,160 1,160 1,160 1,150 1,160
Big asset Low Ivol 1,191 1,191 1,191 1,191 1,180 1,191
High Ivol 395 395 395 395 391 395
Low payout ratio Low Ivol 439 439 439 439 433 439
High Ivol 1,058 1,058 1,058 1,058 1,048 1,058
High payout ratio Low Ivol 1,146 1,146 1,146 1,146 1,136 1,146
High Ivol 493 493 493 493 487 493
Without bond rating Low Ivol 662 662 662 662 657 662
High Ivol 1,021 1,021 1,021 1,021 1,013 1,021
With bond rating Low Ivol 928 928 928 928 916 928
High Ivol 538 538 538 538 530 538

Panel B: Dollar trading volume (Dvol) as the limits-to-arbitrage proxy
Small asset Low Dvol 1,034 1,034 1,034 1,034 1,026 1,034
High Dvol 268 268 268 268 266 268
Big asset Low Dvol 364 364 364 364 362 364
High Dvol 1,163 1,163 1,163 1,163 1,156 1,163
Low payout ratio Low Dvol 766 766 766 766 761 766
High Dvol 521 521 521 521 517 521
High payout ratio Low Dvol 628 628 628 628 624 628
High Dvol 906 906 906 906 901 906
Without bond rating Low Dvol 953 953 953 953 948 953
High Dvol 498 498 498 498 495 498
With bond rating Low Dvol 446 446 446 446 441 446
High Dvol 934 934 934 934 927 934

robust for any of the six investment-related anomaly
variables.

4.3.2. Doubt sorts

To address the remaining three questions, we split the
sample jointly by a limits-to-arbitrage measure and an
investment frictions measure. In June of each year t, we
sort firms into two groups based on the median of a given
limits-to-arbitrage proxy observed at the end of June of
year t. We also independently sort firms into two groups
around the median of a given financing constraints
measure for the fiscal year ending in calendar year t—1.
Taking intersections partitions the full sample into four
subsamples. Using the two-by-two sort instead of a three-
by-three sort ensures that there are a sufficient number of
firms in a given subsample in any given year. Table 6
reports the time series average numbers of firms in the
cross section for the subsamples split jointly by limits-to-
arbitrage proxies and financing constraints measures. We
estimate cross-sectional regressions of monthly percent
excess returns from July of year t to June of year t+1 on a
given anomaly variable for the fiscal year ending in
calendar year t—1 in each subsample. We calculate the
slope differences and their t-statistics across subsamples
along a given proxy of limits-to-arbitrage or investment
frictions.

To address whether the lack of support for g-theory is
due to costly arbitrage that drives a wedge between
expected returns and average realized returns, we
contrast the significance of the evidence on the impact
of investment frictions in the subsample with low
limits-to-arbitrage to that in the subsample with high
limits-to-arbitrage. If the lack of support for g-theory is
caused by limits-to-arbitrage, we should see stronger
evidence in support of investment frictions in the low
limits-to-arbitrage subsample that is less affected by
mispricing than in the high limits-to-arbitrage subsample
that is more affected by mispricing.

The evidence reported in the upper halves of Panels A
and B in Table 7 says otherwise. The vast majority of
the t-statistics reported in brackets suggest that the
slope differences across extreme investment frictions
subsamples in the low limits-to-arbitrage subsample are
insignificant. In particular, only in two (the I/A and ACI
slope differences across the low and the high payout ratio
terciles in the low idiosyncratic volatility subsample) out
of 36 specifications are these slope differences significant.
This evidence means that the wedge between expected
and average returns caused by mispricing is not
responsible for the lack of support for g-theory with
investment frictions as an explanation for the anomalies.

To address whether the evidence supporting the
g-theory explanation for the I/A and AA/A anomalies is
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Table 7
Slopes from Fama and MacBeth (1973) cross-sectional regressions of monthly percent excess returns on anomaly variables in the subsamples split jointly
by limits-to-arbitrage measures and financing constraints measures (July 1963-December 2008, 558 months).

We run univariate cross-sectional regressions of monthly percent excess returns from July of year t to June of year t+1 on a given anomaly variable for
the fiscal year ending in calendar year t—1 in subsamples split by an independent two by two sort on a given limits-to-arbitrage measure and a given
financing constraints measure. In June of each year t we sort firms into two groups based on the median of a given trading frictions measure and
independently sort firms into two groups around the median of a given financing constraints measure for the fiscal year ending in calendar year t—1.
Taking intersections partitions the full sample into four subsamples. I/A is investment-to-assets, AA/A is asset growth, Al/I is investment growth, NSI is
net stock issues, ACI is abnormal corporate investment, and NOA is net operating assets. See the caption of Table 1 for detailed variable definitions. We
report the slope differences and their Fama and MacBeth t-statistics (in brackets) across the subsamples. “Low Ivol, without-minus-with rating” is the
difference between subsamples without and with bond ratings within the half of the sample consisting of firms with lower-than-medium idiosyncratic
volatility. “Small asset, high-minus-low Ivol” is the difference between the two idiosyncratic volatility subsamples within the half of the sample
consisting of firms with below-median asset size. Other various cuts of the sample are defined analogously. Excess returns are in excess of one-month
Treasury bill rate (from Kenneth French’s website). For firms with negative earnings but positive payout, we do not calculate their payout ratios but
categorize them as least constrained (along with firms with high payout ratios).

1/A AA/A AlJ/I NSI Al NOA
Panel A: Idiosyncratic volatility (Ivol) as the limits-to-arbitrage proxy
Low Ivol, 0.06 0.04 —0.06 -0.58 —0.04 0.10
small-minus-big asset [0.29] [0.31] [-1.68] [-1.26] [-0.87] [0.89]
High Ivol, -0.14 -0.16 0.01 —0.07 —0.01 0.05
small-minus-big asset [-0.56] [-1.06] [0.38] [-0.15] [-0.25] [0.36]
Low Ivol, —0.40 -0.18 —0.05 -0.31 -0.12 —0.06
low-minus-high payout [-2.07] [—1.42] [-1.58] [-0.75] [-2.62] [-0.55]
High Ivol, -0.16 -0.15 —-0.01 047 0.00 —-0.02
low-minus-high payout [-0.70] [-1.02] [-0.25] [0.99] [0.05] [-0.14]
Low Ivol, -0.19 -0.15 —0.04 -0.29 —0.02 0.16
without-minus-with rating [-1.13] [-1.14] [-1.49] [-0.77] [-0.41] [1.69]
High Ivol, -0.21 -0.33 -0.03 —0.04 0.08 —0.06
without-minus-with rating [-1.03] [—2.46] [-1.10] [—-0.10] [1.49] [-0.52]
Small asset, —0.63 -0.57 —0.01 0.83 0.03 -0.25
high-minus-low Ivol [-2.85] [-3.75] [-0.56] [1.80] [0.73] [—-1.94]
Big asset, -0.43 -0.37 —0.09 0.32 0.01 -0.20
high-minus-low Ivol [-1.81] [-2.43] [-2.18] [0.74] [0.09] [—1.58]
Low payout, -0.38 -0.43 —0.02 0.54 0.09 -0.18
high-minus-low Ivol [-1.92] [-3.11] [-0.81] [1.26] [1.85] [-1.52]
High payout, -0.61 —0.46 —0.06 -0.24 -0.03 -0.22
high-minus-low Ivol [-2.38] [-2.70] [-1.84] [-0.50] [-0.50] [-1.58]
Without rating, -0.59 —0.61 —0.05 0.40 0.03 -0.32
high-minus-low Ivol [-2.75] [-4.15] [-1.62] [0.96] [0.67] [—2.68]
With rating, -0.57 -0.43 —0.06 0.16 —0.06 —0.09
high-minus-low Ivol [-2.42] [-2.74] [-1.63] [0.35] [-1.03] [-0.68]

Panel B: Dollar trading volume (Dvol) as the limits-to-arbitrage proxy

Low Dvol, —0.96 —-0.34 —0.06 —0.21 —0.10 —0.18
small-minus-big asset [-3.08] [-1.60] [-1.30] [-0.35] [-1.62] [-0.90]
High Dvol, 0.10 -0.10 —0.01 0.31 -0.10 0.17
small-minus-big asset [0.28] [—0.44] [-0.21] [0.39] [-1.27] [0.86]
Low Dvol, —0.41 —0.21 —0.04 1.16 —0.03 0.06
low-minus-high payout [-1.59] [-1.20] [-1.42] [2.01] [-0.58] [0.38]
High Dvol, —-0.33 —0.13 —0.02 0.35 —0.05 0.09
low-minus-high payout [-1.40] [-0.85] [-0.58] [0.65] [-0.81] [0.59]
Low Dvol, —0.57 —-0.71 —0.03 —0.62 0.04 —0.18
without-minus-with rating [—2.02] [—3.68] [—0.82] [—1.10] [0.82] [-1.13]
High Dvol, —0.37 —-0.25 —0.06 —-0.25 0.08 —0.04
without-minus-with rating [-1.68] [—1.64] [-1.70] [-0.58] [1.48] [-0.28]
Small asset, —0.80 —-0.37 —0.04 —0.51 0.00 —0.28
low-minus-high Dvol [-2.28] [-1.57] [-0.82] [-0.65] [0.05] [-1.37]
Big asset, 0.26 —-0.13 0.01 0.01 0.01 0.07
low-minus-high Dvol [1.00] [-0.58] [0.14] [0.01] [0.11] [0.42]
Low payout, —0.57 —0.38 —0.01 —-0.15 —0.03 —0.26
low-minus-high Dvol [—2.40] [-2.23] [-0.36] [-0.25] [-0.61] [-1.68]
High payout, —0.49 —0.30 0.01 —0.96 —0.05 —0.23
low-minus-high Dvol [—2.09] [-1.59] [0.22] [—1.94] [—0.99] [-1.51]
Without rating, —0.50 —0.44 0.00 —0.26 —0.10 —0.22
low-minus-high Dvol [—2.00] [-2.51] [0.15] [-0.53] [—1.88] [-1.53]
With rating, —-0.30 0.03 —0.03 0.11 —-0.07 —0.08

low-minus-high Dvol [-1.04] [0.16] [-0.74] [0.21] [-1.16] [-0.44]
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robust to controlling for limits-to-arbitrage as the alter-
native explanation, we check whether the evidence in
support of g-theory holds regardless of whether proxies
for limits-to-arbitrage are high or low. The answer is
provided by the first two columns in the upper halves of
Panels A and B in Table 7. Although in the vast majority of
cases, the sign of the slope differences goes in the right
direction as predicted by g-theory, only in five out of 24
specifications are the slope differences in I/A or AA/A
significant across extreme investment frictions subsam-
ples. Further, four out of the five significant cases are in
the high limits-to-arbitrage subsample (with either high
idiosyncratic  volatility or low trading volume).
As such, the evidence in support of g-theory for the
I/A and AA/A effects is not robust to controlling for
limits-to-arbitrage proxies.

To address whether the evidence in support of a limits-
to-arbitrage explanation for the anomalies is robust to
controlling for different levels of investment frictions, we
check whether the significance of limits-to-arbitrage
holds regardless of whether proxies for investment
frictions are high or low. The results provided by the
lower halves of Panels A and B in Table 7 suggest that it
does. Panel A shows that in 10 out of 12 specifications the
slope differences are significant at the 5% level across the
high and low idiosyncratic volatility subsamples. Even in
the two insignificant cases, the slope differences are more
than 1.8 standard errors from zero. Panel B shows that in
six out of 12 specifications the slope differences are
significant across the low and the high trading volume
subsamples. The evidence clearly suggests that limits-to-
arbitrage proxies dominate investment frictions proxies in
direct comparisons. Again, the support for g-theory with
investment frictions as an explanation of anomalies is not
robust to controlling for mispricing associated with
limits-to-arbitrage.

5. Conclusion

We make two contributions to the literature. First, we
use a two-period g-theory model to show theoretically
that the expected return-investment relation should be
steeper in firms with high investment frictions than in
firms with low investment frictions. With frictions,
investment entails investment costs, and higher invest-
ment entails higher investment costs, causing investment
to be less elastic to changes in the discount rate.
The higher are the investment costs, the less elastic
investment is in responding to changes in the discount
rate. A given magnitude change in investment
corresponds to a higher magnitude change in the discount
rate, meaning that the expected return-investment
relation is steeper, the greater the investment costs.

Second, using financing constraints as proxies for
investment frictions, we examine the prediction of
g-theory that investment costs make the relations of
expected returns with investment-to-assets and asset
growth steeper. Overall support for the g-theory predic-
tion is weak. Accounting for investment costs does not
enable g-theory to explain the investment growth, net

stock issues, abnormal corporate investment, or net
operating assets anomalies. More important, proxies for
limits-to-arbitrage motivated by mispricing dominate
proxies for investment frictions motivated by g-theory
in direct comparisons, suggesting that mispricing better
explains the anomalies in question.
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