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1. Introduction 

Despite similar market betas, firms with high book-

to-market (value firms) earn higher average stock returns

than firms with low book-to-market (growth firms). This

stylized fact is commonly referred to as the value premium

puzzle. In the US sample from July 1963 to June 2017, the

high-minus-low book-to-market decile return is, on aver-

age, 0.47% per month ( t = 2 . 53 ). However, its market beta

is only 0.07 ( t = 0 . 86 ), giving rise to an economically large

alpha of 0.43% ( t = 1 . 89 ) in the capital asset pricing model

(CAPM) ( Fama and French, 1992 ). However, the CAPM per-

forms better in explaining the value premium in the long

sample from July 1926 onward that contains the Great De-

pression ( Ang and Chen, 2007 ). The high-minus-low re-

turn is, on average, 0.48% ( t = 2 . 5 ), but its CAPM alpha
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is only 0.19% ( t = 0 . 99 ), with a large market beta of 0.45

( t = 3 . 87 ). 

This paper studies whether incorporating rare disas- 

ters helps explain the value premium puzzle. To this 

end, we embed disasters into a general equilibrium pro- 

duction economy with heterogeneous firms. The resulting 

model features three key ingredients, including rare, but 

severe, declines in aggregate productivity growth, asym- 

metric adjustment costs, and recursive utility. We calibrate 

the model to disaster moments estimated from a histori- 

cal cross-country panel dataset ( Nakamura et al., 2013 ). We 

quantify the model’s properties on simulated samples in 

which disasters are not realized as well as on samples in 

which disasters are realized. 

We report three key quantitative results. First, our equi- 

librium model succeeds in replicating the failure of the 

CAPM in explaining the value premium in finite samples in 

which disasters are not materialized as well as its better 

performance in samples in which disasters are material- 

ized. Intuitively, with asymmetric adjustment costs, when 

a disaster hits, value firms are burdened with more unpro- 

ductive capital and find it more difficult to reduce capital 

than growth firms. As such, value firms are more exposed 

to the disaster risk than growth firms. Combined with the 

household’s high marginal utility in disasters, the model 

implies a sizeable value premium. 

More important, the disaster risk induces strong non- 

linearity in the pricing kernel, making the linear CAPM 

a poor empirical proxy for the pricing kernel. When dis- 

asters are not realized in a finite sample, the estimated 

market beta only measures the weak covariation of the 

value-minus-growth return with the market excess re- 

turn in normal times. However, the value premium is 

primarily driven by the higher exposures of value stocks 

to disasters than growth stocks. Consequently, the CAPM 

fails to explain the value premium in normal times. In 

contrast, when disasters are realized, the estimated market 

beta provides a better account for the large covariation 

between the value-minus-growth return and the pricing 

kernel. As such, the CAPM does better in capturing the 

value premium in samples with disasters. In all, disasters 

help explain the value premium puzzle. 

Second, our equilibrium model is also consistent with 

the beta “anomaly” that the empirical relation between the 

market beta and the average return is too flat to be con- 

sistent with the CAPM ( Frazzini and Pedersen, 2014 ). In 

simulated samples, with and without disasters, sorting on 

the preranking market beta yields an average return spread 

that is economically small and statistically insignificant, a 

postranking beta spread that is economically large and sig- 

nificantly positive, and a CAPM alpha spread that is eco- 

nomically large and often significantly negative. 

The crux is that the estimated market beta is a poor 

proxy for the true beta. Intuitively, based on prior 60- 

month rolling windows, the preranking beta is the average 

beta over the prior five years. In contrast, the true beta 

accurately reflects changes in aggregate and firm-specific 

state variables. In simulations, the true beta often mean re- 

verts within a given rolling window, giving rise to a nega- 

tive correlation with the rolling beta, especially in samples 

without disasters. However, while the realization of dis- 
asters makes the rolling beta more aligned with the true 

beta, the measurement errors remain large, and the beta 

anomaly persists even in the disaster samples. 

Third, our equilibrium model, in which a nonlinear con- 

sumption CAPM holds by construction, also largely suc- 

ceeds in replicating the empirical failure of the standard, 

linearized consumption CAPM. In simulations, with and 

without disasters, the consumption betas from regressing 

excess returns on the aggregate consumption growth in 

the first-stage regressions are mostly insignificant and of- 

ten even negative. In the second-stage cross-sectional re- 

gressions, the slopes for the price of consumption risk are 

significantly negative, but the intercepts are significantly 

positive. Intuitively, the aggregate consumption growth is a 

poor proxy for the pricing kernel based on recursive utility. 

The true pricing kernel performs substantially better in the 

linearized consumption CAPM tests, especially in the dis- 

aster samples. However, without the extreme observations 

from disasters, even the true price kernel encounters diffi- 

culty in the linear tests. Finally, as a byproduct from using 

the 25 size and book-to-market portfolios as testing assets 

for the consumption CAPM, our equilibrium model also re- 

produces the stylized fact that the average value premium 

is stronger in small firms than in big firms. Decreasing 

returns to scale and the disaster risk drive this result in 

our model, without any limit to arbitrage per Shleifer and 

Vishny (1997) . 

Our work contributes to investment-based asset pricing 

theories. Building on Cochrane (1991) and Berk et al. 

(1999) , early models explain the value premium with 

only one aggregate shock. Carlson et al. (2004) highlight 

operating leverage. Zhang (2005) emphasizes asymmetric 

adjustment costs, which make assets in place harder 

to reduce and cause the assets to be riskier than growth 

options, especially in bad times. We turbocharge the asym- 

metry mechanism via disasters. Cooper (2006a) examines 

nonconvex adjustment costs and investment irreversibility. 

Tuzel (2010) studies real estate capital and shows that 

firms with high real estate are riskier than firms with low 

real estate, since it depreciates more slowly. A limitation 

of these one-shock models is that the CAPM roughly holds 

in simulations, as the CAPM alpha of the value premium 

is economically too small relative to that in the post-1963 

sample ( Lin and Zhang, 2013 ). 

Several recent studies try to explain the failure of the 

CAPM by breaking the tight link between the pricing 

kernel and the market excess return via multiple aggre- 

gate shocks, including short-run and long-run shocks ( Ai 

and Kiku, 2013 ), investment-specific technological shocks 

( Kogan and Papanikolaou, 2013 ), stochastic adjustment 

costs ( Belo et al., 2014 ), and uncertainty shocks ( Koh, 

2015 ). Although successful in explaining the failure of the 

CAPM in the post-1963 sample, these two-shock models 

contradict the long sample evidence by construction. We 

retain the single-factor structure but fail the CAPM via 

disaster-induced nonlinearity in the pricing kernel. 

Methodologically, most prior models are partial equi- 

librium in nature, with exogenous pricing kernels. We 

instead construct a general equilibrium model with het- 

erogenous firms in which consumption and the pricing 

kernel are endogenously determined. A major challenge 
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in solving the general equilibrium model is that the

infinite-dimensional cross-sectional distribution of firms

is an endogenous, aggregate state variable. We adapt the

approximate aggregation algorithm of Krusell and Smith

(1997, 1998) to overcome the computational difficulty. Sub-

stantively, the general equilibrium allows us to explain the

poor performance of the consumption CAPM in the data. 1 

We also contribute to the disaster literature, which uses

disasters to explain the equity premium puzzle, so far

mostly in endowment economies. Barro (20 06, 20 09) re-

vives the idea of Rietz (1988) by calibrating the disas-

ter model to a long cross-country panel dataset. Gabaix

(2012) and Wachter (2013) use time-varying disaster prob-

ability to explain the market volatility and time series pre-

dictability. Gourio (2012) embeds disasters into an aggre-

gate production economy to jointly explain asset prices

and business cycles. In an endowment economy with mul-

tiple assets, Martin (2013) shows that return correlations

arise endogenously to spike in disasters. To the best of

our knowledge, we provide the first equilibrium produc-

tion model for the cross-section with disasters. Integrating

the disaster literature with investment-based asset pricing,

we show how disasters help resolve a long-standing puz-

zle in the latter literature in explaining the failure of the

(consumption) CAPM. 2 

The rest of the paper is organized as follows.

Section 2 presents the stylized facts, Section 3 constructs

the equilibrium model, Section 4 reports the quantitative

results, and Section 5 concludes. 
1 On the technical challenge and extreme importance of general equi- 

librium, Cochrane (2005a) writes: “Bringing multiple firms in at all is the 

first challenge for a general equilibrium model that wants to address the 

cross-section of returns. Since the extra technologies represent nonzero 

net supply assets, each ‘firm’ adds another state variable to the equilib- 

rium. Many of the above papers circumvent this problem by modeling the 

discount factor directly as a function of shocks rather than specify pref- 

erences and derive the discount factor from the equilibrium consumption 

process. Then each firm can be valued in isolation. This is a fine short cut 

in order to learn about useful specifications of technology, but in the end, 

of course we don’t really understand risk premia until they come from 

the equilibrium consumption process fed through a utility function” (p. 

67). “The general equilibrium approach is a vast and largely unexplored 

new land. The papers covered here are like Columbus’s report that the 

land is there. The pressing challenge is to develop a general equilibrium 

model with an interesting cross-section. The model needs to have multi- 

ple ‘firms’; it needs to generate the fact that low-price ‘value’ firms have 

higher returns than high price ‘growth firms’; it needs to generate the 

failure of the CAPM to account for these returns, and it needs to gener- 

ate the comovement of value firms that underlies Fama and French’s factor 

model, all this with preference and technology specifications that are at 

least not wildly inconsistent with microeconomic investigation” (p. 91–92, 

original emphasis). 
2 Cochrane (2005a) emphasizes the importance of explaining the failure 

of the (consumption) CAPM: “[The value premium] puzzle is not so much 

the existence of value and growth firms but the fact that these charac- 

teristics do not correspond to betas. None of the current models really 

achieves this step. Most models price assets by a conditional CAPM or a 

conditional consumption-based model; the ‘value’ firms have higher con- 

ditional betas. Any failures of the CAPM in the models are due to omitting 

conditioning information or the fact that the stock market is imperfectly 

correlated with consumption. My impression is that these features do not 

account quantitatively for the failures of the CAPM or consumption-based 

model in the data” (p. 67–68). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Stylized facts 

This section shows the stylized facts to be explained,

including the CAPM performance ( Section 2.1 ), the beta

anomaly ( Section 2.2 ), and the consumption CAPM perfor-

mance ( Section 2.3 ). 

2.1. The failure of the CAPM 

Table 1 reports the monthly CAPM regressions for the

book-to-market deciles. The monthly returns data for the

deciles, the value-weighted market portfolio, and the one-

month Treasury bill rate are from Kenneth French’s data

library. The data are from July 1926 to June 2017. 

Panel A shows that, consistent with Fama and French

(1992) , the CAPM has difficulty in explaining the value pre-

mium (the value-minus-growth decile return) in the sam-

ple after July 1963. Moving from the growth decile to the

value decile, the average excess return rises from 0.44% per

month to 0.91%, and the average return spread is 0.47%

( t = 2 . 53 ). Despite the increasing relation between book-

to-market and the average excess return, the market beta

is largely flat across the deciles. The value-minus-growth

decile has only a small market beta of 0.07 ( t = 0 . 86 ). Ac-

cordingly, its CAPM alpha is economically large, 0.43%, al-

beit only marginally significant ( t = 1 . 89 ). The CAPM alpha

is nearly identical in magnitude to the average value pre-

mium. The regression R 2 is essentially zero. The Gibbons

et al. (1989 , GRS) test rejects the null hypothesis that the

alphas across all ten deciles are jointly zero at the 5% sig-

nificance level. 3 

Panel B shows that the CAPM explains the value pre-

mium in the long sample from July 1926 to June 2017,

consistent with Ang and Chen (2007) . Their sample ends

in December 2001, and we replicate their result in our

extended sample. The average excess return varies from

0.59% per month for the growth decile to 1.07% for the

value decile. The value premium is, on average, 0.48% ( t =
2 . 5 ), which is close to 0.47% in the post-1963 sample. More

important, the CAPM explains the value premium, with a

small alpha of 0.19% ( t = 0 . 99 ) and a large market beta of

0.45 ( t = 3 . 87 ). Relative to the post-1963 sample, the re-

gression R 2 rises considerably from zero to 14%. However,

the GRS test still rejects the null that the CAPM alphas are

jointly zero across the ten deciles. 

Panel C shows that the CAPM does a good job in ex-

plaining the value premium from July 1926 to June 1963.

The value-minus-growth decile return is, on average, 0.51%

per month, albeit insignificant ( t = 1 . 3 ). The magnitude of

the value premium is comparable to that in the post-1963

sample. Most important, its market beta is economically

large and statistically significant, 0.71 ( t = 5 . 31 ), in sharp

contrast to the market beta of 0.07 ( t = 0 . 86 ) in the
3 In the original July 1963–December 1990 sample in Fama and French 

(1992) , the average excess return goes from 0.22% per month for the 

growth decile to 0.81% for the value decile, and the value premium is, 

on average, 0.59% ( t = 2 . 41 ) (untabulated). However, the market beta de- 

creases slightly from 1.08 for the growth decile to 1.05 for the value 

decile. As a result, the CAPM alpha for the value-minus-growth decile is 

0.6% ( t = 2 . 17 ). 
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Table 1 

The CAPM regressions for the book-to-market deciles. 

For each decile, this table reports the average excess return, denoted E [ R e ], the CAPM alpha, α, the market beta, β , their t -values adjusted for het- 

eroskedasticity and autocorrelations ( t R e , t α , and t β , respectively), and the goodness of fit, R 2 , from the time series CAPM regression. L, H, and H-L are the 

growth, value, and value-minus-growth deciles, respectively. F GRS is the GRS F -statistic testing that the alphas across all ten deciles are jointly zero and 

p GRS its p -value. The sample period in Panel A is from July 1963 to June 2017, with 648 months. The sample period in Panel B is from July 1926 to June 

2017, with 1092 months, and the sample period in Panel C is from July 1926 to June 1963, with 4 4 4 months. 

L 2 3 4 5 6 7 8 9 H H-L 

Panel A: The post-Compustat sample ( F GRS = 2 . 04 , p GRS = 0 . 03 ) 

E [ R e ] 0.44 0.54 0.59 0.54 0.55 0.66 0.62 0.70 0.86 0.91 0.47 

t R e 2.22 3.00 3.26 2.98 3.14 3.88 3.49 3.88 4.41 3.80 2.53 

α −0.11 0.02 0.07 0.03 0.07 0.20 0.15 0.23 0.35 0.32 0.43 

t α −1.23 0.44 1.17 0.39 0.80 2.21 1.23 2.00 3.03 2.04 1.89 

β 1.06 1.00 0.99 0.98 0.91 0.88 0.92 0.91 0.98 1.13 0.07 

t β 41.66 42.06 40.88 32.43 28.19 23.30 19.35 18.26 22.65 17.47 0.86 

R 2 0.86 0.91 0.91 0.87 0.83 0.80 0.78 0.76 0.77 0.68 0.00 

Panel B: The full sample ( F GRS = 2 . 05 , p GRS = 0 . 03 ) 

E [ R e ] 0.59 0.69 0.69 0.66 0.72 0.79 0.72 0.91 1.06 1.07 0.48 

t R e 3.40 4.28 4.23 3.71 4.19 4.35 3.73 4.49 4.55 3.84 2.50 

α −0.08 0.07 0.05 −0.02 0.07 0.11 0.00 0.16 0.22 0.11 0.19 

t α −1.21 1.46 1.02 −0.38 0.92 1.32 0.02 1.82 1.94 0.74 0.99 

β 1.01 0.95 0.97 1.05 1.00 1.03 1.10 1.14 1.28 1.46 0.45 

t β 52.73 27.62 59.98 22.11 27.29 14.85 17.73 16.11 14.32 14.49 3.87 

R 2 0.90 0.91 0.93 0.90 0.89 0.85 0.84 0.83 0.80 0.72 0.14 

Panel C: The pre-Compustat sample ( F GRS = 1 . 48 , p GRS = 0 . 14 ) 

E [ R e ] 0.80 0.90 0.84 0.85 0.98 0.99 0.87 1.22 1.35 1.31 0.51 

t R e 2.57 3.06 2.77 2.40 2.89 2.65 2.17 2.88 2.72 2.22 1.30 

α −0.04 0.11 0.02 −0.10 0.07 0.01 −0.18 0.11 0.08 −0.14 −0.10 

t α −0.44 1.60 0.25 −1.12 0.71 0.07 −1.27 0.89 0.38 −0.50 −0.31 

β 0.98 0.91 0.96 1.10 1.06 1.14 1.23 1.30 1.48 1.68 0.71 

t β 46.35 19.18 47.86 16.67 24.69 12.60 17.77 16.90 15.07 14.50 5.31 

R 2 0.94 0.92 0.94 0.92 0.93 0.89 0.89 0.89 0.84 0.77 0.31 

Table 2 

Large swings in the stock market returns and the corresponding value-minus-growth decile returns, July 1926–June 

2017, 1092 months. 

This table reports market excess returns, MKT, below 1.5 and above 98.5 percentiles in the long US sample. H-L is 

the value-minus-growth decile return. Returns are in monthly percent. 

MKT H-L MKT H-L 

November 1928 11.81 −0.29 August 1933 12.05 3.76 

October 1929 −20.12 7.60 January 1934 12.60 35.20 

June 1930 −16.27 −3.60 September 1937 −13.61 −10.56 

May 1931 −13.24 −3.37 March 1938 −23.82 −20.35 

June 1931 13.90 14.57 April 1938 14.51 9.16 

September 1931 −29.13 −4.03 June 1938 23.87 11.15 

December 1931 −13.53 −16.22 September 1939 16.88 57.22 

April 1932 −17.96 −2.65 May 1940 −21.95 −15.59 

May 1932 −20.51 4.09 October 1974 16.10 −13.57 

July 1932 33.84 44.54 January 1975 13.66 19.72 

August 1932 37.06 67.95 January 1976 12.16 15.03 

October 1932 −13.17 −12.80 March 1980 −12.90 −8.78 

February 1933 −15.24 −5.70 January 1987 12.47 −2.83 

April 1933 38.85 20.04 October 1987 −23.24 −1.20 

May 1933 21.43 44.85 August 1998 −16.08 −3.27 

June 1933 13.11 10.40 October 2008 −17.23 −9.64 

 

post-1963 sample. As a result, the CAPM alpha becomes 

even negative before 1963, −0 . 1% ( t = −0 . 31 ), which is in

sharp contrast to 0.43% ( t = 1 . 89 ) after 1963. The regres- 

sion R 2 of 31% before 1963 is twice as large as that in the 

full sample, 14%, in sharp contrast to the R 2 of zero after 

1963. Finally, the GRS test fails to reject the CAPM with 

the book-to-market deciles ( p -value = 0.14). 

To shed further light on the differences across the 

pre- and post-1963 samples, Table 2 reports large market 

swings with market excess returns below 1.5 and above 
98.5 percentiles of the empirical distribution as well as the 

corresponding months and value-minus-growth decile re- 

turns. There are in total 32 such observations, 23 of which 

are from the Great Depression. When the market excess re- 

turn is very low, the value-minus-growth return tends to 

be very low, and when the market excess return is very 

high, the value-minus-growth return tends to be very high. 

Their correlation is 0.72 across these observations. In par- 

ticular, the lowest value premium is −20 . 35% in March 

1938, which comes with an abysmally low market excess 
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Fig. 1. The CAPM regressions for the value-minus-growth decile, July 1926–June 2017. The figure presents the scatter plot and fitted line for the time series 

CAPM regression of the value premium, defined as the value-minus-growth decile return. In Panel A, the monthly market excess returns below the 1.5 and 

above 98.5 percentiles are dated in red. Returns are in monthly percent. The sample period in Panel A is from July 1926 to June 2017, with 1092 months, 

and the sample period in Panel B is from July 1963 to June 2017, with 648 months. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

return of −23 . 82% . The highest value premium is 67.95% in

August 1932, which comes with an exuberantly high mar-

ket excess return of 37.06%. More recently, following the

bankruptcy of Lehman Brothers, the market excess return

is −17.23% in October 2008, during which the value-minus-

growth return is −9 . 64% . 

Fig. 1 presents the scatter plots and fitted market re-

gression lines for the value-minus-growth decile return for

the long sample (Panel A) and the post-1963 sample (Panel

B). Panel A highlights in red the observations with monthly

market excess returns below 1.5 and above 98.5 percentiles

of the empirical distribution. These observations clearly

contribute to the market beta of 0.45 ( t = 3 . 87 ) for the

value-minus-growth decile in the long sample. In contrast,

Panel B shows that large swings in the stock market are

scarce in the post-1963 sample, giving rise to a largely flat

regression line. In all, the CAPM does a good job in ex-

plaining the value premium in the long sample that in-

cludes the Great Depression but largely fails in the short

post-1963 sample. 

2.2. The beta anomaly 

Refuting Ang and Chen (2007) , who argue that the

CAPM explains the value premium in the long sample,

Fama and French (2006) emphasize the CAPM’s problem

that the cross-sectional variation in the market beta goes

unrewarded. This flat relation between the market beta

and the average return, known as the beta anomaly, has

a long tradition in empirical asset pricing ( Fama and Mac-

Beth, 1973; Fama and French, 1992; Frazzini and Pedersen,

2014 ). 

Table 3 presents the average excess returns and CAPM

regressions across the market beta deciles. At the end of

June of each year t , NYSE, Amex, and Nasdaq stocks are
sorted into deciles based on the NYSE breakpoints of the

preranking betas from rolling-window CAPM regressions

in the prior 60 months (24 months minimum). Monthly

value-weighted returns are calculated from July of year t

to June of t + 1 , and the deciles are rebalanced in June.

The sample starts in July 1928 because we use the data

from the first 24 months to estimate the preranking betas

in June 1928. 

Panel A shows that, contradicting the CAPM, the re-

lation between the market beta and the average return

in the data is largely flat. Moving from the low to high

beta decile, the average excess return rises from 0.52% per

month to 0.55%, and the tiny spread of 0.03% is within

0.2 standard errors from zero. Sorting on the preranking

beta yields an economically large postranking beta spread

of 1.06 ( t = 11 . 81 ) across the extreme deciles. As such, the

CAPM alpha for the high-minus-low market beta decile

is economically large, −0 . 52% , albeit marginally significant

( t = −1 . 94 ). 

From Panel B, the sample from July 1928 onward yields

largely similar results. The average excess return varies

from 0.58% per month for the low beta decile to 0.75%

for the high beta decile, and the small spread of 0.16%

is within one standard error from zero. The preranking

beta sort again yields an economically large spread of

1.13 ( t = 18 . 82 ) in the postranking beta across the extreme

deciles. As such, the CAPM alpha for the high-minus-low

beta decile is negative, both economically large, −0 . 55% ,

and statistically significant ( t = −2 . 81 ). 

2.3. The failure of the consumption CAPM 

To test the consumption CAPM, we use two-stage

Fama and MacBeth (1973) cross-sectional regressions be-

cause the aggregate consumption growth is not tradable
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Table 3 

The CAPM regressions for the preranking market beta deciles. 

For each decile, this table reports the average excess return, E [ R e ], the CAPM alpha, α, the postranking market beta, β , t -statistics adjusted for het- 

eroskedasticity and autocorrelations ( t R e , t α , and t β , respectively), and the goodness of fit, R 2 , from the time series CAPM regressions. L, H, and H-L are the 

low, high, and high-minus-low preranking market beta decile. F GRS is the GRS F -statistic testing that the alphas across all ten deciles are jointly zero and 

p GRS its p -value. The sample period in Panel A is from July 1963 to June 2017, with 648 months. The sample period in Panel B is from July 1928 to June 

2017, with 1068 months, with the 24 monthly observations from July 1926 to June 1928 used to estimate the market betas for July 1928. 

L 2 3 4 5 6 7 8 9 H H-L 

Panel A: The post-Compustat sample ( F GRS = 1 . 39 , p GRS = 0 . 18 ) 

E [ R e ] 0.52 0.52 0.56 0.58 0.69 0.55 0.67 0.55 0.57 0.55 0.03 

t R e 3.85 3.64 3.45 3.38 3.75 2.86 3.14 2.42 2.23 1.72 0.11 

α 0.22 0.17 0.13 0.12 0.18 0.01 0.07 −0.08 −0.13 −0.29 −0.52 

t α 2.11 1.76 1.69 1.42 2.17 0.18 0.85 −0.82 −1.10 −1.49 −1.94 

β 0.57 0.68 0.82 0.87 0.98 1.03 1.15 1.22 1.34 1.62 1.06 

t β 12.39 17.21 20.57 20.68 28.13 31.21 50.25 41.76 35.41 30.92 11.81 

R 2 0.53 0.68 0.77 0.79 0.86 0.86 0.88 0.86 0.84 0.77 0.43 

Panel B: The full sample ( F GRS = 2 . 41 , p GRS = 0 . 01 ) 

E [ R e ] 0.58 0.63 0.65 0.74 0.83 0.72 0.79 0.73 0.77 0.75 0.16 

t R e 5.03 4.66 4.41 4.46 4.54 3.71 3.74 3.11 2.94 2.44 0.66 

α 0.22 0.16 0.13 0.14 0.17 0.01 0.02 −0.13 −0.17 −0.33 −0.55 

t α 2.87 2.22 2.21 2.31 2.49 0.20 0.27 −1.51 −1.68 −2.29 −2.81 

β 0.57 0.73 0.83 0.94 1.05 1.11 1.22 1.36 1.48 1.70 1.13 

t β 22.86 30.50 36.61 40.31 41.41 39.61 48.26 36.17 26.65 40.93 18.82 

R 2 0.66 0.81 0.85 0.88 0.90 0.90 0.91 0.90 0.88 0.84 0.57 

 

 

 

( Breeden et al., 1989; Jagannathan and Wang, 2007 ). To 

ensure a sufficient number of observations in the second- 

stage regressions, we use the 25 size and book-to-market 

portfolios as testing assets ( Fama and French, 1996 ). In the 

first stage, we regress excess returns on the aggregate con- 

sumption growth, g Ct : 

R 

e 
it = a i + βC 

i g Ct + e it , (1) 

in which R e 
it 

is portfolio i ’s excess return, βC 
i 

the consump- 

tion beta, and e it the residual. 

In the second stage, we regress portfolio excess returns 

on the consumption betas: 

R 

e 
it = φ0 + φ1 β

C 
i + αi , (2) 

in which φ0 is the intercept, φ1 the price of consump- 

tion risk, and αi the residual. The consumption CAPM pre- 

dicts that φ0 + αi = 0 , φ1 is significantly positive, and the 

expected risk premium equals φ1 β
C 
i 

. We test φ0 + αi = 0 

with a χ2 -test, which is the cross-sectional counterpart of 

the time series GRS test, following Eq. (12.14) in Cochrane 

(2005b) . We adjust the variance-covariance matrix of the 

pricing errors with the Shanken (1992) method per Eq. 

(12.20) in Cochrane (2005b) . 

We obtain consumption data from National Income and 

Product Accounts (NIPA) Table 7.1 from Bureau of Eco- 

nomic Analysis. Consumption is the sum of per capita non- 

durables plus services in chained dollars. The annual se- 

ries is from 1929 to 2016, and the quarterly series from 

the first quarter (Q1) of 1947 to the second quarter (Q2) 

of 2017. The annual series contains the Great Depression 

but the quarterly series does not. We test the consumption 

CAPM with both annual and quarterly data. We also im- 

plement the Jagannathan and Wang (2007) fourth-quarter 

consumption growth model, in which annual consump- 

tion growth is calculated with only the fourth-quarter con- 

sumption data. The rationale is that investors are more 

likely to make their consumption and portfolio choice deci- 
sions simultaneously in the fourth-quarter because the tax 

year ends in December. 

Table 4 reports the average excess returns and con- 

sumption betas for the 25 size and book-to-market portfo- 

lios. The portfolio returns data are from Kenneth French’s 

website. Panel A shows that in the 1930–2016 annual sam- 

ple, the average value premium is stronger in small firms 

than in big firms. In the smallest quintile, the value-minus- 

growth quintile return is, on average, 12.52% per annum 

( t = 4 . 31 ), whereas in the biggest quintile, only 4.12% ( t =
1 . 74 ). The pattern is similar in the 1947:Q2–2017:Q2 quar- 

terly sample. The value premium is, on average, 2.4% per 

quarter ( t = 5 . 01 ) in the smallest quintile but only 0.57%

( t = 1 . 33 ) in the biggest quintile. The results from the

shorter 1948–2016 annual sample are largely similar. 

Panel A also shows that the consumption betas es- 

timated from annual consumption growth do not align 

with the average returns across the 25 portfolios. For 

example, despite the high average excess return, 18.56% 

per annum, of the small-value portfolio, relative to only 

6.04% of the small-growth portfolio, the consumption 

beta of the former is lower than that of the latter, 1.58 

versus 2.8. Similarly, Panel B shows that the consumption 

betas estimated from quarterly consumption growth do 

not align either with the average returns. The contrast in 

the average return between the small-growth and small- 

value portfolios is 1.25% versus 3.65% per quarter, but the 

consumption beta goes in the wrong direction, 4.22 ver- 

sus 3.94. Finally, consistent with Jagannathan and Wang 

(2007) , the consumption betas estimated from fourth- 

quarter consumption growth align better with the average 

returns. The small-value portfolio has a consumption beta 

of 6.09, which is higher than 3.83 of the small-growth 

portfolio, going in the right direction in explaining the 

average returns. 

Table 5 reports the second-stage cross-sectional tests 

of the consumption CAPM. From Panel A, the consumption 
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Table 4 

The average excess returns and consumption betas for the 25 size and book-to-market portfolios. 

For each portfolio, this table reports average excess return, E [ R e ], and consumption beta, βC , and their t -values ad- 

justed for heteroskedasticity and autocorrelations, t R e and t βC , respectively. Returns in Panels A and C are in annual 

percent and those in Panel B in quarterly percent. 

L 2 3 4 H L 2 3 4 H 

Panel A: Annual consumption growth, 1930–2016, 87 years 

E [ R e ] t R e 

Small 6.04 10.65 13.73 16.82 18.56 1.48 2.44 3.85 4.44 4.57 

2 9.02 12.32 13.33 14.90 16.03 2.51 4.00 4.25 4.51 4.67 

3 9.27 11.83 11.88 13.73 14.72 3.09 4.35 4.38 4.69 4.34 

4 8.82 9.68 11.49 12.83 13.16 3.48 3.76 4.16 4.45 3.69 

Big 7.46 7.38 8.90 8.36 11.58 3.44 3.62 3.92 3.12 3.72 

βC t βC 

Small 2.80 0.66 1.63 1.86 1.58 1.52 0.19 0.70 0.69 0.57 

2 1.25 1.72 0.88 1.25 1.68 0.54 0.83 0.41 0.53 0.78 

3 0.29 1.11 1.77 2.12 2.15 0.14 0.64 0.99 1.15 0.94 

4 0.38 0.37 1.32 1.36 0.47 0.25 0.20 0.70 0.66 0.18 

Big 1.05 0.59 1.79 2.26 −0.88 0.93 0.47 1.18 1.19 −0.28 

Panel B: Quarterly consumption growth, 1947:Q2–2017:Q2, 281 quarters 

E [ R e ] t R e 

Small 1.25 2.58 2.57 3.23 3.65 1.39 3.36 3.78 4.93 5.06 

2 1.74 2.58 2.86 3.01 3.38 2.21 3.90 4.78 5.02 5.00 

3 1.96 2.61 2.54 2.99 3.26 2.79 4.40 4.63 5.26 5.08 

4 2.18 2.18 2.60 2.74 2.93 3.41 3.97 4.83 5.06 4.45 

Big 1.90 1.90 2.18 1.98 2.47 3.74 4.10 4.99 3.91 4.26 

βC t βC 

Small 4.22 4.73 3.43 3.63 3.94 2.46 3.23 2.54 2.84 2.63 

2 3.01 2.89 2.91 3.07 3.60 2.08 2.34 2.65 2.62 2.66 

3 2.85 2.59 2.57 2.63 2.99 2.02 2.18 2.43 2.22 2.55 

4 2.47 2.16 2.54 2.39 3.77 1.86 1.92 1.94 2.04 2.59 

Big 2.62 1.94 1.97 2.60 2.80 2.54 1.93 2.09 1.99 2.44 

Panel C: Fourth-quarter consumption growth, 1948–2016, 69 years 

E [ R e ] t R e 

Small 5.38 11.47 11.21 14.25 16.17 1.30 3.14 3.61 4.69 4.77 

2 6.95 10.71 12.30 13.18 14.48 2.08 3.93 4.53 4.86 4.82 

3 7.72 11.03 10.74 13.14 14.25 2.74 4.42 4.57 4.78 4.85 

4 8.77 9.00 11.21 12.00 12.73 3.35 3.97 4.45 4.74 4.25 

Big 7.95 7.74 9.41 8.54 10.81 3.47 3.92 4.59 3.58 3.94 

βC t βC 

Small 3.83 5.50 4.35 5.05 6.09 1.43 2.32 2.01 2.73 2.69 

2 3.07 3.17 4.48 5.08 6.34 1.36 1.60 2.58 3.07 3.50 

3 2.64 3.89 4.03 4.50 5.68 1.20 2.13 2.45 2.26 3.06 

4 2.22 3.02 4.23 5.03 5.95 1.06 1.60 2.02 2.78 2.77 

Big 3.04 2.86 3.34 5.19 5.12 1.67 1.84 2.11 2.89 2.66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAPM fails in the annual sample from 1930 to 2016.

The estimate of the price of consumption risk, φ1 , is

economically small, 0.58% per annum, and statistically

insignificant, with both the Fama–MacBeth and Shanken-

adjusted t -values below 1.2. In contrast, the intercept, φ0 ,

is economically large, 10.97%, and highly significant, with

both t -values around four. The χ2 test strongly rejects

the null that the pricing errors are jointly zero across the

testing assets ( p -value = 0.00). Finally, the cross-sectional

R 2 is only 2.13%, indicating that average excess return and

the consumption beta are poorly aligned across the testing

assets. 

The poor alignment is shown in Panel A of Fig. 2 , which

plots average excess returns predicted by the consump-

tion CAPM estimated from the annual data against aver-

age realized excess returns. The scatter plot is largely hor-
izontal, indicating little explanatory power. In particular,

the small-growth portfolio (denoted “11”) earns, on aver-

age, only 6.04% per annum and the small-value portfolio

(“15”) 18.56%. In contrast, the small-growth portfolio has

a higher consumption beta than the small-value portfolio,

2.8 versus 1.58. Combined with the φ1 estimate of 0.58%,

the consumption CAPM predicts a negative small-stock

value premium of −0 . 71% , in contrast to 12.52% in the

data. 

Using the quarterly sample from 1947 onward yields

largely similar results. Panel B of Table 5 shows that the

price of consumption risk, φ1 , is estimated to be 0.22% per

quarter, which is economically small and statistically in-

significant, with the Fama–MacBeth and Shanken-adjusted

t -values both below 1.2. In contrast, the intercept, φ0 , is

1.88%, which is economically large and highly significant,



276 H. Bai et al. / Journal of Financial Economics 131 (2019) 269–298 

Table 5 

Cross-sectional regression tests of the consumption CAPM. 

This table reports the Fama–MacBeth cross-sectional regression tests of the consumption CAPM in Eq. (2) . 

Testing assets are the 25 Fama–French size and book-to-market portfolios. Consumption betas are estimated 

from time-series regressions of portfolio excess returns on the aggregate consumption growth. Panel A uses an- 

nual consumption growth from 1930 to 2016 (87 years), Panel B quarterly consumption growth from the second 

quarter (Q2) of 1947 to the second quarter of 2017 (281 quarters), and Panel C the fourth-quarter consumption 

growth from 1948 to 2016 (69 years). φ0 is the intercept, and φ1 the slope, which provides the price of the 

consumption risk in the second-stage cross-sectional regressions. t FM is the Fama–MacBeth, and t S the Shanken- 

adjusted t -values. χ2 is the χ2 -statistic testing that all the pricing errors, φ0 + αi , are jointly zero, calculated 

per Eq. (12.14) in Cochrane (2005b) . We adjust the variance-covariance matrix of the pricing errors with the 

Shanken (1992) method per Eq. (12.20) in Cochrane (2005b) . p χ2 is the p -value for the χ2 test, with 23 de- 

grees of freedom. R 2 is the average goodness-of-fit coefficient of the cross-sectional regressions. The estimates 

of φ0 and φ1 are in annual percent in Panels A and C and in quarterly percent in Panel B. 

Panel A: Annual, Panel B: Quarterly, Panel C: Fourth-quarter, 

1930–2016 1947:Q2–2017:Q2 1948–2016 

φ0 φ1 φ0 φ1 φ0 φ1 

Estimates 10.97 0.58 1.88 0.22 3.30 1.75 

t FM 4.14 1.16 3.73 1.12 1.23 3.44 

t S 3.99 1.13 3.42 1.03 0.77 2.23 

χ2 152.19 10 0.0 0 55.85 

p χ2 0.00 0.00 0.00 

R 2 0.02 0.07 0.60 

Fig. 2. Average predicted excess returns versus average realized excess returns, in percent, the consumption CAPM. This figure plots the average predicted 

( y -axis) against average realized excess returns ( x -axis) of the 25 size and book-to-market portfolios. Each two-digit number represents one portfolio, with 

the first digit referring to the size quintile (“1” the smallest, “5” the biggest) and the second digit the book-to-market quintile (“1” the lowest, “5” the 

highest). Panel A uses annual consumption growth from 1930 to 2016, Panel B quarterly consumption growth from the second quarter (Q2) of 1947 to the 

second quarter of 2017, and Panel C the fourth-quarter consumption growth from 1948 to 2016. The predicted excess return of portfolio i is φ1 βC 
i 
, in which 

βC 
i 

is its consumption beta from the first-stage regression and φ1 the price of consumption risk from the second-stage regression. 
with t -values above 3.4. The χ2 test again strongly rejects 

the null that the pricing errors are jointly zero across the 

testing assets. The cross-sectional regression R 2 remains 

low, 7.11%. 

Panel B of Fig. 2 again shows the poor alignment be- 

tween average predicted and average realized excess re- 

turns. The small-growth portfolio earns, on average, 1.25% 

and the small-value portfolio 3.65%. However, the small- 

growth portfolio has a higher consumption beta than the 

small-value portfolio, 4.22 versus 3.94. Combined with the 

φ1 estimate of 0.22%, the consumption CAPM predicts a 

negative small-stock value premium of −0 . 06% , in contrast 

to 2.4% in the data. 

With an extended sample from 1948 to 2016, we 

replicate the superior performance of the fourth-quarter 

consumption growth model that Jagannathan and Wang 

(2007) show in their 1954–2003 sample. Panel C of 

Table 5 reports that the price of consumption risk is 1.75% 

per annum, with a Fama–MacBeth t -value of 3.44 and a 
Shanken-adjusted t -value of 2.23. The intercept of cross- 

sectional regressions is only 3.3%, which is insignificant 

with t -values below 1.3. However, the χ2 test still strongly 

rejects the null that the pricing errors are jointly zero 

across the testing assets. More impressively, the cross- 

sectional R 2 is 60%. 

Panel C of Fig. 2 shows that the scatter plot of average 

predicted versus average realized excess returns is better 

aligned with the 45-degree line. The small-growth portfo- 

lio earns, on average, 5.38%, in contrast to 16.17% for the 

small-value portfolio. Going in the right direction as the 

average returns, the small-growth portfolio has a lower 

consumption beta than the small-value portfolio, 3.83 ver- 

sus 6.09. Combined with the φ1 estimate of 1.75%, the 

Jagannathan–Wang consumption CAPM predicts a positive 

small-stock value premium of 3.96%. Although its mag- 

nitude is lower than 10.79% in the data, the model is a 

substantial improvement over the standard consumption 

CAPM. 
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4 Kopecky and Suen (2010) show that the Rouwenhorst (1995) method 

dominates other popular methods in the Markov-chain approximation to 

autoregressive processes in the context of the stochastic growth model. 

Petrosky-Nadeau and Zhang (2017) show similar results in the search 

model of equilibrium unemployment. 
5 To construct the ̃  P matrix, we set p = (ρg + 1) / 2 , and define the tran- 

sition matrix for n g = 3 as 

˜ P (3) ≡
[ 

p 2 2 p(1 − p) (1 − p) 2 

p(1 − p) p 2 + (1 − p) 2 p(1 − p) 
(1 − p) 2 2 p(1 − p) p 2 

] 
. (11) 

To obtain ̃  P = ̃

 P (5) , we use the following recursion: 

p 

[˜ P (n g ) 0 

0 ′ 0 

]
+ (1 − p) 

[
0 ˜ P (n g ) 

0 0 ′ 

]
+ (1 − p) 

[
0 ′ 0 ˜ P (n g ) 0 

]
+ p 

[
0 0 ′ 
0 ˜ P (n g ) 

]
, 

(12) 

in which 0 is a n g × 1 column vector of zeros. We then divide all but the 

top and bottom rows by two to ensure that the conditional probabilities 

sum up to one in ˜ P (n g +1) (see Rouwenhorst, 1995 , p. 306–307, p. 325–

329). 
3. An equilibrium model 

Our general equilibrium model with disasters and het-

erogeneous firms draws elements from the disaster model

of Rietz (1988) and Barro (2006, 2009) as well as the neo-

classical investment model of Zhang (2005) . The economy

is populated by a representative household with recursive

utility and heterogenous firms. The firms take the house-

hold’s intertemporal rate of substitution as given when de-

termining optimal policies. The production technology is

subject to both aggregate and firm-specific shocks. The ag-

gregate shock contains normally distributed states as well

as a disaster and a recovery state. 

3.1. Preferences 

The representative household has recursive utility, U t ,

defined over aggregate consumption, C t : 

 t = 

[
(1 − �) C 

1 − 1 
ψ 

t + � 

(
E t 
[
U 

1 −γ
t+1 

]) 1 −1 /ψ 
1 −γ

] 1 
1 −1 /ψ 

, (3)

in which ϱ is the time discount factor, ψ the intertemporal

elasticity of substitution, and γ the relative risk aversion

( Epstein and Zin, 1989 ). The pricing kernel is given by 

M t+1 = � 

(
C t+1 

C t 

)− 1 
ψ 

( 

U 

1 −γ
t+1 

E t 
[
U 

1 −γ
t+1 

]) 

1 /ψ−γ
1 −γ

. (4)

We adopt the recursive utility to delink the relative risk

aversion, γ , from the intertemporal elasticity of substitu-

tion, ψ . Their values are both higher than unity in our

calibration ( Section 4.1 ). Nakamura et al. (2013) show that

a low value of ψ less than unity implies counterfactually

a surge in stock prices at the onset of disasters. The rea-

son is that entering a (persistent) disaster state generates

a strong desire to save, since consumption is expected to

fall substantially in the future. With a small ψ , this effect

dominates the negative effect of the disaster state on firms’

cash flows, raising their stock prices. Gourio (2012) makes

a similar point in a production economy that when ψ < 1,

the onset of disasters counterfactually increases invest-

ment. 

3.2. Technology 

Firms produce output with capital and are subject to

both aggregate and firm-specific shocks. Output for firm i

at time t , denoted Y it ≡ Y ( K it , Z it , X t ), is given by 

 it = (X t Z it ) 
1 −ξ K 

ξ
it 
, (5)

in which ξ > 0 is the curvature parameter, X t is the aggre-

gate productivity, Z it is the firm-specific productivity, and

K it is capital. Operating profits, denoted 
it , are defined as


it = Y it − f K it , (6)

in which fK it , with f > 0, is the fixed costs of produc-

tion. The fixed costs are scaled by capital to ensure that

the costs do not become trivially small along a balanced

growth path. 
The log aggregate productivity growth, g xt ≡
log (X t /X t−1 ) , is specified as 

g xt = g + g t , (7)

in which g is the constant mean. We assume that g t follows

a first-order autoregressive process: 

g t+1 = ρg g t + σg ε
g 
t+1 

, (8)

in which εg 
t+1 

is a standard normal shock, and the uncon-

ditional mean of g t is zero. 

The firm-specific productivity for firm i , Z it , has a tran-

sition function given by 

z it+1 = (1 − ρz ) z + ρz z it + σz ε
z 
it+1 , (9)

in which z it ≡ log Z it , z is the unconditional mean of z it
common to all firms, and εz 

it+1 
is an independently and

identically distributed standard normal shock. We assume

that εz 
it+1 

and εz 
jt+1 

are uncorrelated for any i � = j , and εg 
t+1

and εz 
it+1 

are uncorrelated for all i . 

3.3. Disasters 

We follow Rouwenhorst (1995) to discretize the de-

meaned aggregate productivity growth, g t , into a five-point

grid, { g 1 , g 2 , g 3 , g 4 , g 5 }. 4 The grid is symmetric around

the long-run mean of zero and even spaced. The dis-

tance between any two adjacent grid point is given by

2 σg / 
√ 

(1 − ρ2 
g )(n g − 1) , in which n g = 5 . The Rouwenhorst

procedure also produces a transition matrix, ˜ P , given by 

˜ P = 

⎡ ⎢ ⎢ ⎣ 

p 11 p 12 . . . p 15 

p 21 p 22 . . . p 25 

. . . 
. . . 

. . . 
. . . 

p 51 p 52 . . . p 55 

⎤ ⎥ ⎥ ⎦ 

, (10)

in which p ij , for i, j = 1 , . . . , 5 , is the probability of g t+1 =
g j conditional on g t = g i . 

5 

Alternatively, instead of the autoregressive process of

g t in Eq. (8) , we could specify g t directly as the five-

state Markov process with the transition matrix given by˜ P . The benefit of starting from the autoregressive process
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is to make the calibration more parsimonious. All the five 

grid points and the five-by-five transition probabilities are 

uniquely pinned down by only two parameters in the au- 

toregressive process: the persistence, ρg , and the condi- 

tional volatility, σ g . 

To incorporate disasters into the model, we modify di- 

rectly the discretized g t grid and its transition matrix, fol- 

lowing Danthine and Donaldson (1999) . In particular, we 

insert into the g t grid a disaster state, g 0 = λD , in which 

λD < 0 is the disaster size as well as a recovery state, g 6 = 

λR , in which λR > 0 is the recovery size. Accordingly, we 

form the transition matrix, P , by modifying ˜ P to incorpo- 

rate the disaster and recovery states as follows: 

P = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

θ 0 0 . . . 0 1 − θ
η p 11 − η p 12 . . . p 15 0 

η p 21 p 22 − η . . . p 25 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

η p 51 p 52 . . . p 55 − η 0 

0 (1 − ν) / 5 (1 − ν) / 5 . . . (1 − ν) / 5 ν

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(13) 

In the modified transition matrix, P , η is the probabil- 

ity of entering the disaster state from any of the normal 

states, and θ is the probability of remaining in the disaster 

state next period conditional on the economy in the disas- 

ter state in the current period. As such, θ is the persistence 

of the disaster state. Similarly, ν is the persistence of the 

recovery state. In addition, in constructing the transition 

matrix, we have implicitly assumed that the economy can 

only enter the recovery state following a disaster. Once in 

the recovery state, the economy can enter any of the nor- 

mal states with an equal probability, (1 − ν) / 5 , but cannot 

fall immediately back into the disaster state. 

The modeling of disasters as large drops in total factor 

productivity, and consequently, in output and consump- 

tion is motivated by Barro (2006) , Barro (2009) , Barro and 

Ursúa (2008) , and Nakamura et al. (2013) . These studies 

show evidence on consumption and output disasters in a 

historical cross-country panel. In addition, Cole and Oha- 

nian (1999) show that negative shocks to total factor pro- 

ductivity can account for over half of the 1929–1933 down- 

turn in the Great Depression in the US. Finally, Kehoe and 

Prescott (2007) show that productivity shocks play an im- 

portant role during economic disasters around the world. 

3.4. Adjustment costs 

Let I it denote firm i ’s investment at time t . Capital accu- 

mulates as follows: 

K it+1 = I it + (1 − δ) K it , (14) 

in which δ is the capital depreciation rate. Real investment 

entails asymmetric adjustment costs: 

�it ≡ �(I it , K it ) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

a + K it + 

c + 

2 

(
I it 
K it 

)2 

K it for I it > 0 

0 for I it = 0 

a −K it + 

c −

2 

(
I it 
K it 

)2 

K it for I it < 0 

, 

(15) 
in which a − > a + > 0 and c − > c + > 0 capture the asym-

metry ( Abel and Eberly, 1994 ). 

3.5. Firms’ problem 

Let μt denote the bivariate cross-sectional distribution 

of capital, K it , and firm-specific productivity, Z it . With a 

continuum of firms, μt is a pair of interrelated continu- 

ous functions. In practice, we use a very large number, N , 

of firms as the proxy for the infinite-dimensional contin- 

uum. As such, μt is an N -by-two matrix, with two cross- 

sectionally correlated columns. Because of the aggregate 

shocks, μt is time-varying. We denote its equilibrium law 

of motion, ϒ , as given by 

μt+1 = ϒ(μt , X t , X t+1 ) . (16) 

Because μt is relevant for firms to forecast future con- 

sumption, C t+1 , and consequently, the pricing kernel, M t+1 , 

μt is an endogenous, aggregate state variable in the gen- 

eral equilibrium model. 

Upon observing the exogenous aggregate state, X t , 

the endogenous aggregate state, μt , the exogenous firm- 

specific state, Z it , and the endogenous firm-specific state, 

K it , firm i makes optimal investment decision, I it , and opti- 

mal exit decision, χ it , to maximize its market value of eq- 

uity. Let D it ≡ 
it − I it − �(I it , K it ) be dividends. The cum- 

dividend market equity, V it , is given by 

V it ≡ V (K it , Z it ; X t , μt ) 

= max 
{ χit } 

(
max 
{ I it } 

D it + E t [ M t+1 V (K it+1 , Z it+1 ;

X t+1 , μt+1 )] , sK it 

)
, (17) 

in which s > 0 is the liquidation value parameter, subject to 

the capital accumulation Eq. (14) and the equilibrium law 

of motion for μt in Eq. (16) . 

When V it ≥ sK it , which is the exit threshold, firm i 

stays in the economy, i.e., χit = 0 . For all the incumbent 

firms, evaluating the value function at the optimum yields 

V it = D it + E t [ M t+1 V it+1 ] . Equivalently, E t [ M t+1 R it+1 ] = 1 , in

which R it+1 ≡ V it+1 / (V it − D it ) is the stock return. Using the 

definition of covariance, we can rewrite E t [ M t+1 R it+1 ] = 1 

as 

E t [ R it+1 ] = r f t + 

(
−Cov t [ R it+1 , M t+1 ] 

Var t [ M t+1 ] 

)
Var t [ M t+1 ] 

E t [ M t+1 ] 

= r f t + βM 

it φMt (18) 

in which r f t ≡ 1 /E t [ M t+1 ] is the real interest rate, βM 

i 
≡

−Cov t [ R it+1 , M t+1 ] / Var t [ M t+1 ] the true beta, and φMt ≡
Var t [ M t+1 ] / E t [ M t+1 ] the price of consumption risk. 

When V it < sK it , firm i exits from the economy at the 

beginning of time t , i.e., χit = 1 . We set its stock return

over period t − 1 , R it , to be a predetermined, constant 

delisting return, denoted ̃

 R . We assume that the firm enters 

an immediate reorganization process. The current share- 

holders of the firm receive sK it as the liquidation value, 

and the old firm ceases to exit. New shareholders take over 

the remainder of the firm’s capital, (1 − s − κ) K it , in which

κ ∈ [0 , 1 − s ] is the reorganization cost parameter. For com- 

putational tractability, we assume that the reorganization 
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process occurs instantaneously. At the beginning of t , the

old firm is replaced by a new firm with an initial capital

of (1 − s − κ) K it and a new firm-specific log productivity,

z it , that equals its unconditional mean, z . This modeling of

entry and exit keeps the number of firms constant in the

economy. 

Prior theoretical models, all of which have no disasters,

have largely ignored the exit decision. With disasters, firms

are more likely to exit in the disaster state, especially when

the liquidation value parameter, s , is high. As such, we in-

corporate the exit decision, and the related entry decision,

into the model to better quantify the impact of disaster dy-

namics on the cross-section. 

3.6. Competitive equilibrium 

A recursive competitive equilibrium consists of an op-

timal investment rule, I ( K it , Z it ; X t , μt ); an optimal exit

rule, χ ( K it , Z it ; X t , μt ); a value function, V ( K it , Z it ; X t , μt );

and an equilibrium law of motion for the firm distribution,

ϒ(μt , X t , X t+1 ) , such that the following conditions hold. 

• Optimality: I ( K it , Z it ; X t , μt ), χ ( K it , Z it ; X t , μt ), and V ( K it ,

Z it ; X t , μt ) solve the value maximization problem in

Eq. (17) for each firm. 

• Consistency: The aggregate behavior of the economy is

consistent with the optimal behavior of all firms in the

economy. Let Y t , I t , K t , �t denote the aggregate output,

investment, capital, and adjustment costs, respectively,

then 

Y t = 

∫ 
Y it μt (dK it , dZ it ) , (19)

I t = 

∫ 
I it μt (dK it , dZ it ) , (20)

K t = 

∫ 
K it μt (dK it , dZ it ) , (21)

�t = 

∫ 
�it μt (dK it , dZ it ) . (22)

Also, the law of motion for the firm distribution, ϒ , is

consistent with the optimal decisions of firms. Let � be

any measurable set in the product space of K it+1 and

Z it+1 , then ϒ is given by 

μt+1 (�, X t+1 ) = T (�, (K it , Z it ) , X t ) μt (K it , Z it , X t ) , 

(23)

in which 

T (�, (K it , Z it ) , X t ) 

≡
∫ ∫ 

1 { (I it +(1 −δ) K it ,Z it+1 ) ∈ �} Q Z (dZ it+1 | Z it ) Q X (dX t+1 | X t ) ,

(24)

1 { · } is an indicator function that takes the value of one

if the event described in { · } is true, and zero otherwise,

and Q Z and Q X are the transition functions for Z it and

X t , respectively. 
• Market clearing: Aggregate consumption equals aggre-

gate output minus aggregate investment: 

C t = Y t − I t ⇒ C t = D t + f K t + �t . (25)

We treat the fixed costs of production, fK t , and capital

adjustment costs, �t , as compensation to labor and in-

clude their sum as part of consumption. Doing so drives

a wedge between consumption and aggregate dividends

to help explain risk premiums ( Abel, 1999 ). 

3.7. Solving for the competitive equilibrium 

Because the model features a balanced growth path,

we first reformulate it in terms of stationary variables be-

fore solving for its competitive equilibrium. We define the

following stationary variables: ̂ U t ≡ U t /C t , ̂ 
it ≡ 
it /X t−1 ,
 

 it ≡ V it /X t−1 , 
̂ K it ≡ K it /X t−1 , 

̂ I it ≡ I it /X t−1 , 
̂ �it ≡ �it /X t−1 ,̂ 

 t ≡ C t /X t−1 , and 

̂ D it ≡ D it /X t−1 , and then rewrite the key

equations as follows: 

• The log utility-to-consumption ratio, ̂ u t ≡ log ( ̂  U t ) : 

exp ( ̂  u t ) = 

[ 
(1 − �) + � ( E t [ exp [ (1 − γ ) 

× ( ̂  u t+1 + ̂

 g ct+1 + g xt ) ] ] ) 
1 −1 /ψ 

1 −γ

] 1 
1 −1 /ψ 

, (26)

in which 

̂ g ct+1 ≡ log ( ̂  C t+1 / ̂
 C t ) is the log growth rate of

detrended consumption. 

• The pricing kernel: 

M t+1 = � exp 

[ 
− 1 

ψ 

( ̂  g ct+1 + g xt ) 

] 
×
[

exp [ (1 − γ )( ̂  u t+1 + ̂

 g ct+1 ) ] 

E t [ exp [ (1 − γ )( ̂  u t+1 + ̂

 g ct+1 ) ] ] 

] 1 /ψ−γ
1 −γ

. 

(27)

• Profits: ̂ 
it ≡ exp [(1 − ξ ) g xt ] Z 
1 −ξ
it 
̂ K 

ξ
it 

− f ̂  K it . 

• Capital accumulation: ̂ K it+1 exp (g xt ) = (1 − δ) ̂  K it + ̂

 I it . 

• The adjustment costs function: 

̂ �it = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

a + ̂ K it + 

c + 

2 

(̂ I it ̂ K it 

)2 ̂ K it for ̂ I it > 0 

0 for ̂ I it = 0 

a −̂ K it + 

c −

2 

(̂ I it ̂ K it 

)2 ̂ K it for ̂ I it < 0 

. (28)

• The cross-sectional distribution of ̂ K it and Z it , ̂ μt and its

equilibrium law of motion, ̂ ϒt . 

• The value function, ̂  V it ≡ ̂ V 
(̂ K it , Z it , g t , ̂  μt 

)
: ̂ V it = max 

{ χit } 
[ max 

{ ̂ I it } 
̂ D it + E t [ M t+1 ̂

 V ( ̂  K it+1 , Z it+1 , g t+1 , ̂  μt+1 )]

× exp (g xt ) , s ̂  K it ] . (29)

• The stock return for an incumbent firm: R it+1 ≡̂ V it+1 exp (g xt ) / ( ̂  V it − ̂ D it ) . 

A major challenge in solving and analyzing our general

equilibrium model is that the cross-sectional distribution,

μt , is an endogenous, aggregate state variable that affects

the pricing kernel, M t+1 . We adopt the idea of approximate

aggregation from Krusell and Smith (1997, 1998) to make

the firms’ problem computationally tractable. We guess
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Table 6 

Parameter values in the benchmark monthly calibration. 

ϱ denotes the time discount factor, γ the relative risk aversion, ψ the intertemporal elasticity of substitution, ḡ the 

long-run mean of log aggregate productivity growth, ρg the persistence of productivity growth, σ g the conditional 

volatility of productivity growth, η the disaster probability, λD the disaster size, θ the disaster persistence, λR the re- 

covery size, ν the recovery persistence, ξ the curvature of the production function, δ the capital depreciation rate, f 

the fixed costs of production parameter, z the long-run mean of log firm-specific productivity level, ρz the persistence 

of log firm-specific productivity, σ z the conditional volatility of log firm-specific productivity, a + upward nonconvex 

adjustment costs parameter, a − downward nonconvex adjustment costs parameter, c + upward convex adjustment costs 

parameter, c − downward convex adjustment costs parameter, s the liquidation value parameter, κ the reorganization 

costs parameter, and ̃  R the delisting return. 

ϱ γ ψ ḡ ρg σ g η λD θ λR ν ξ

0.9945 5 1.5 1.9%/12 0.6 0.003 2%/12 −2.75% 0.914 1/3 1.5% 0.964 0.65 

δ f z ρz σ z a + a − c + c − s κ ˜ R 

0.01 0.005 −8 . 52 0.985 0.5 0.035 0.05 75 150 0 0.25 −12 . 33% 
and verify that the cross-sectional average detrended cap- 

ital, denoted K t , contains all the information of μt that is 

relevant for forecasting the pricing kernel, M t+1 . The ap- 

pendix details our computational algorithm. 

4. Quantitative results 

We calibrate the model and report its basic moments 

in Section 4.1 . We present key equilibrium properties 

in Section 4.2 . We explain the failure of the CAPM in 

Section 4.3 , the beta anomaly in Section 4.4 , and the fail- 

ure of the consumption CAPM in Section 4.5 . Finally, we 

report extensive comparative statics in Section 4.6 . 

4.1. Calibration and basic moments 

Table 6 reports the parameter values in our monthly 

calibration. For preferences, we set the intertemporal elas- 

ticity of substitution, ψ , to 1.5, the relative risk aversion, γ , 

five, and the time discount factor, ϱ, 0.9945. For the param- 

eters that govern the dynamics in normal times, we set the 

balance growth rate, g , to 1.9%/12, which matches an an- 

nualized growth rate of 1.9% for real per capita consump- 

tion (nondurables and services) growth from the second 

quarter of 1947 to the second quarter of 2017 in NIPA Ta- 

ble 7.1. The persistence of the demeaned aggregate produc- 

tivity growth, ρg , is 0.6, and its conditional volatility, σ g , 

0.003, which, as shown below, yield a reasonable match 

with consumption growth dynamics in the postwar data. 

For the parameters that govern the disaster dynam- 

ics, we set the disaster persistence, θ = 0 . 914 1 / 3 , which 

is the probability that the economy remains in the dis- 

aster state in the next month conditional on it being in 

the disaster state in the current month. This monthly per- 

sistence accords with a quarterly persistence of 0.914 as 

in Gourio (2012) , and the average duration of disasters is 

1 / (1 − 0 . 914 1 / 3 ) = 33 months (roughly three years), con- 

sistent with Barro and Ursúa (2008) . We set the disaster 

probability, η, to be 2%/12, which implies an annual dis- 

aster probability of 2%. This disaster probability is conser- 

vative relative to the 2.8% annual probability estimated in 

Nakamura et al. (2013) and the 0.72% quarterly probability 

calibrated in Gourio. 
Following Gourio (2012) , we calibrate the remaining 

disaster parameters, including the disaster size, λD , the re- 

covery size, λR , and the recovery persistence, ν , in the de- 

meaned aggregate productivity growth, g t , to ensure that 

the impulse response of consumption to a disaster shock 

in the model’s simulations replicates the basic pattern in 

the data reported in Nakamura et al. (2013) . This proce- 

dure yields λD = −2 . 75% , λR = 1 . 5% , and ν = 0 . 964 . 

Panel A of Fig. 3 shows that the model’s impulse re- 

sponse is conservative relative to that in the data. The av- 

erage maximum short-term effect of disasters across more 

than 28,0 0 0 disaster episodes simulated from the model 

is a drop of 13.9% for consumption, and the median max- 

imum short-term effect is a drop of 18.9% of consump- 

tion. The average long-term negative effect is about 9% fall, 

and the median 11% fall in consumption. For comparison, 

Nakamura et al. (2013) report that the mean maximum 

short-term effect of disasters is 29% drop in consumption 

across countries, and the long-term effect is 14% fall. The 

median maximum short-term effect is 24% drop in con- 

sumption, and the median long-term impact is 10% fall. 

Panel B shows that the 16 and 84 percentiles of the 

consumption impulse response to a disaster shock are 

wide in the model’s simulations. The two bounds provide 

the 68% confidence interval for the impulse response in the 

model. The large amount of uncertainty at the beginning of 

a disaster on its impact is also clearly visible in the data, as 

shown in (Nakamura et al., 2013, Fig. 3) . The large uncer- 

tainty is perhaps not surprising. Disasters are rare events. 

As such, estimating their statistical properties comes with 

large standard errors. 

The remaining parameters govern the various technolo- 

gies in the economy. We set the curvature parameter in the 

production function, ξ = 0 . 65 , per Hennessy and Whited 

(2007) . The monthly depreciation rate, δ, is 0.01, which 

implies an annual rate of 12%, as estimated by Cooper 

and Haltiwanger (2006b) . The persistence, ρz , and condi- 

tional volatility, σ z , of the firm-specific productivity are 

set to be 0.985 and 0.5, respectively, which are somewhat 

larger than the values in Zhang (2005) after adjusting for 

the curvature parameter ξ . We do so to ensure a suffi- 

cient amount of the cross-sectional dispersion of firms. The 

long-run mean of log firm-specific productivity, z̄ , is −8 . 52 
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Fig. 3. The impulse response of consumption to a disaster shock in the model. In simulated data, when the economy enters the disaster state, we calculate 

the cumulative fractional drop in consumption for 25 years after the impulse. The impulse responses are based on more than 28,0 0 0 disaster episodes. 

Consumption is time aggregated from the monthly to annual frequency. The blue solid line is the mean impulse response, the black dotted line is the 

median, and the two red broken lines in Panel B are the 16 and 84 percentiles in the simulations. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 The relatively high frequency of the disaster samples out of 20 0 0 ar- 

tificial samples is consistent with the low disaster probability of only 2% 

per year. The crux is that we count a (long) sample as a disaster sample if 

it contains at least one disaster episode. Roughly, if a disaster occurs with 

a probability of p in any given period, the chance of observing no disas- 

ters in a given sample is (1 − p) T , in which T is the sample length. The 

probability with at least one disaster in the sample is 1 − (1 − p) T . With 
to scale the long-run average detrended capital around

unity in simulations. 

We set the liquidation value parameter, s = 0 , implying

that shareholders receive nothing in bankruptcy. We set

the reorganizational cost parameter, κ , to 0.25, and the ad-

justment cost parameters a + = 0 . 035 , a − = 0 . 05 , c + = 75 ,

c − = 150 , and the fixed costs parameter, f = 0 . 005 . Be-

cause of the lack of evidence on their values, we calibrate

these parameters to the properties of the book-to-market

deciles and conduct extensive comparative statics to quan-

tify their impact ( Section 4.6 ). Finally, Hou et al. (2017) re-

port that the average delisting return is −12 . 33% in the

Center for Research in Security Prices (CRSP) database. Ac-

cordingly, we set the delisting return in the model, ˜ R , to

the same value. 

Table 7 reports the basic moments of aggregate out-

put, consumption, and investment growth rates both in the

data and in the model. Output in the data is per capita

gross domestic product in chained dollars from NIPA Table

7.1. Consumption is per capita consumption expenditures

on nondurables plus services in chained dollars from NIPA

Table 7.1. Investment is real nonresidential gross private,

fixed domestic investment from NIPA Table 1.1.3, scaled

by population series from NIPA Table 7.1. The data sam-

ple with disasters is annual from 1930 to 2016, and the

data sample without disasters is quarterly from the second

quarter of 1947 to that of 2017. 

To calculate the model moments, we simulate 20 0 0 ar-

tificial samples, each with 30,0 0 0 firms and 20 0 0 months.

Because we need to compute consumption moments, we

simulate a large number of firms, 30,0 0 0, which is nec-

essary to ensure convergence in the laws of motion in

the Krusell–Smith algorithm ( Appendix A.2 ). We start

each simulation by setting the initial capital stocks of all

firms to unity and the initial log firm-specific productiv-

ity levels to its long-run mean, z . We drop the first 944
months to neutralize the impact of the initial condition.

The remaining 1056 months of simulated data are treated

as from the model’s stationary distribution. The sample

size is comparable with the annual sample from 1929

to 2016 for output, consumption, and investment in the

data. 

When at least one disaster is realized in an artificial

sample, we time aggregate the 1056 months into 88 an-

nual observations. Time aggregation means that we add up

12 months within a given year, and treat the sum as the

year’s observation. On artificial samples with no disasters,

we time aggregate the initial 846 months into 282 quar-

ters to be comparable with the quarterly sample from the

first quarter of 1947 to the second quarter of 2017 in the

data. Out of the 20 0 0 artificial samples, 1688 have at least

one disaster, and the remaining 312 have none. As such,

the frequency of having 1056 months (88 years) with at

least one disaster episode is 1688 / 20 0 0 = 84 . 4% . 6 

From Panel A of Table 7 , the output volatility in the

model is close to that in the data, 4.41% versus 4.79% per

annum, with disasters, but lower, 0.5% versus 0.94% per

quarter, without disasters. The first-order autocorrelation

of output growth is somewhat higher in the model than

that in the data, 0.69 versus 0.54, with disasters, and 0.43

versus 0.37, without disasters. The autocorrelations turn

negative at the four- and five-year horizons in the data, but

remain positive in the model. 
our monthly calibration, this probability is 1 − (1 − 0 . 02 / 12) 1 , 056 = 82 . 8% . 
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Table 7 

Basic moments of log output, consumption, and investment growth. 

The data moments in samples with disasters are based on the annual sample from 1930 to 2016 (87 years), and those in samples without disasters 

on the quarterly sample from the second quarter of 1947 to the second quarter of 2017 (281 quarters). “Vol” denotes volatility, “Skew” skewness, and 

“Kurt” kurtosis. The volatilities in samples with disasters are in annual percent and the volatilities in samples without disasters in quarterly percent. Ar i 
is the i th-order autocorrelation. Output in the data is per capita gross domestic product in chained dollars from NIPA Table 7.1, consumption per capita 

consumption expenditures on nondurables plus services in chained dollars from NIPA Table 7.1, and investment real nonresidential gross private, fixed 

domestic investment from NIPA Table 1.1.3, scaled by population series from NIPA Table 7.1. The model moments in the columns denoted “mean” are 

averaged across 20 0 0 samples, each with 30,0 0 0 firms and 20 0 0 months. Columns denoted “2.5,” “50,” and “97.5” report 2.5, 50, and 97.5 percentiles 

across the simulations. The p -value ( p ) is the percentage with which a model moment is larger than its data counterpart. 

Samples with disasters, annual Samples without disasters, quarterly 

Data Mean 2.5 50 97.5 p Data Mean 2.5 50 97.5 p 

Panel A: Output growth 

Vol 4.79 4.41 1.37 4.26 8.50 0.41 0.94 0.50 0.44 0.49 0.65 0.00 

Skew −0.29 −1.89 −4.32 −2.09 2.07 0.15 −0.18 0.02 −0.32 −0.02 1.02 0.88 

Kurt 6.14 11.43 2.95 9.54 27.52 0.78 4.51 3.05 2.41 2.90 5.11 0.04 

Ar 1 0.54 0.69 0.27 0.73 0.93 0.80 Ar 1 0.37 0.43 0.30 0.42 0.63 0.82 

Ar 2 0.19 0.38 −0.15 0.40 0.82 0.74 Ar 4 −0.07 0.11 −0.06 0.09 0.35 0.99 

Ar 3 −0.14 0.23 −0.22 0.21 0.72 0.92 Ar 8 −0.02 0.07 −0.09 0.06 0.26 0.82 

Ar 4 −0.34 0.14 −0.26 0.12 0.62 0.99 Ar 12 −0.12 0.05 −0.10 0.04 0.24 0.99 

Ar 5 −0.19 0.09 −0.25 0.07 0.53 0.94 Ar 20 0.05 0.02 −0.13 0.02 0.19 0.35 

Panel B: Consumption growth 

Vol 2.13 4.28 1.30 4.13 8.28 0.87 0.50 0.46 0.40 0.45 0.60 0.09 

Skew −1.48 −1.93 −4.42 −2.14 2.13 0.32 −0.41 0.02 −0.31 −0.03 1.14 0.99 

Kurt 8.09 11.66 2.98 9.63 28.82 0.63 4.17 3.10 2.44 2.93 5.83 0.04 

Ar 1 0.48 0.69 0.24 0.74 0.93 0.85 Ar 1 0.31 0.44 0.31 0.44 0.66 0.97 

Ar 2 0.18 0.39 −0.15 0.42 0.83 0.75 Ar 4 0.10 0.13 −0.05 0.12 0.39 0.61 

Ar 3 −0.05 0.24 −0.22 0.23 0.72 0.86 Ar 8 −0.02 0.08 −0.08 0.08 0.30 0.86 

Ar 4 −0.19 0.16 −0.24 0.13 0.63 0.95 Ar 12 0.08 0.06 −0.10 0.05 0.28 0.35 

Ar 5 0.00 0.10 −0.24 0.08 0.55 0.70 Ar 20 −0.04 0.03 −0.13 0.03 0.21 0.83 

Panel C: Investment growth 

Vol 13.53 19.56 3.10 12.28 71.84 0.45 2.40 1.09 0.98 1.08 1.33 0.00 

Skew −1.33 −0.17 0.02 −1.56 2.69 0.68 −0.53 −0.20 −0.58 −0.20 0.25 0.96 

Kurt 7.07 27.45 6.68 19.50 100.98 0.96 4.73 3.70 2.85 3.41 5.26 0.03 

Ar 1 0.41 0.18 0.00 0.23 0.59 0.17 Ar 1 0.46 0.24 0.11 0.24 0.38 0.01 

Ar 2 −0.15 −0.06 0.00 0.00 −0.44 0.71 Ar 4 −0.03 −0.00 −0.12 −0.01 0.14 0.63 

Ar 3 −0.33 −0.07 0.00 0.00 0.38 0.96 Ar 8 −0.18 −0.01 −0.12 −0.01 0.11 1.00 

Ar 4 −0.17 −0.06 −0.00 0.00 −0.07 0.84 Ar 12 −0.09 −0.01 −0.13 −0.01 0.11 0.90 

Ar 5 −0.05 −0.05 −0.00 −0.05 −0.06 0.57 Ar 20 0.03 −0.00 −0.12 0.00 0.11 0.29 
Panel B shows that the consumption volatility in the 

model is close to that in the data, 0.46% versus 0.5% per 

quarter, without disasters, but higher, 4.28% versus 2.13% 

per annum, with disasters. The consumption growth is 

negatively skewed and fat tailed both in the data and in 

the model, with disasters. Without disasters, the autocor- 

relation structure of the consumption growth in the model 

resembles that in the data. Except for the first-quarter au- 

tocorrelation, which is somewhat higher in the model than 

in the data, 0.44 versus 0.31, none of the p -values at longer 

lags indicate incompatibility between the data and model 

autocorrelations. With disasters, the autocorrelations are 

somewhat higher in the model than in the data, but none 

of the p -values indicate incompatibility. 

Finally, Panel C shows that the investment volatility in 

the model is higher than that in the data, 19.6% versus 

13.5% per annum, with disasters, but lower, 1.1% versus 

2.4% per quarter, without disasters. The aggregate invest- 

ment growth is more autocorrelated in the data than in 

the model. The first-lag autocorrelation is 0.41 in the long 

annual sample but only 0.18 in the model’s disaster sam- 

ples. The first-lag autocorrelation is 0.46 in the short quar- 

terly sample in the data but 0.24 in the model’s samples 

without disasters. Investment growth is negatively autocor- 
related at longer lags in annual samples with disasters but 

largely uncorrelated in quarterly samples without disasters. 

For aggregate asset pricing moments, it is customary in 

the disaster literature to match international data ( Barro, 

2006 ). In particular, Petrosky-Nadeau et al. (2018) com- 

pile a historical cross-country panel of real stock market 

returns and real interest rates by drawing from Global Fi- 

nancial Data and an updated Dimson et al. (2002) dataset 

obtained from Morningstar. Petrosky-Nadeau et al. 

(2018) report that the equity premium is, on average, 

6.6% per annum across countries, ranging from 3.66% in 

the United Kingdom to 9.66% in Japan. The real interest 

rate is, on average, 1%, ranging from −2 . 44% in Austria to 

3.5% in Denmark. The stock market volatility is, on average, 

25.6%, and the real interest rate volatility 12.32%. The high 

interest rate volatility in the historical data is mostly due 

to sovereign default, which is abstracted from our model. 

In simulations, our model implies an average equity 

premium of 9.6%, with a 95% confidence interval of (8.5%, 

10.2%), and an average interest rate of 2.6%, with a confi- 

dence interval of (0.15%, 4.15%). The interest rate volatility 

is 0.8%, as the intertemporal elasticity of substitution, ψ , is 

1.5. More important, the stock market volatility is only 7.7% 

in the model. This lower volatility than that in the data 
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Fig. 4. Optimal policy functions in the model. Based on the model’s competitive equilibrium, Panel A plots the investment-to-capital ratio, ̂  I it / ̂  K it , on the ̂ K it - z it - g t - K t grid when the demeaned aggregate productivity growth, g t , is set to be the disaster size, λD . ̂  K it is the detrended firm-level capital, z it log firm- 

specific productivity, and K t the cross-sectional average detrended capital (which is set to be the median of its grid). Panel B plots the investment-to-capital 

ratio when g t is set to be zero (the mean normal state) minus the investment-to-capital ratio in the disaster state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is in line with Barro (20 06, 20 09) . Introducing the time-

varying disaster probability per Gourio (2012) and Wachter

(2013) can fix this weakness. Alas, doing so would add one

more state and increase the computational burden expo-

nentially. More important, introducing an extra aggregate

state will most likely strengthen the model’s ability to ex-

plain the failure of the CAPM, which is our main focus. We

opt to achieve this goal with a more parsimonious model. 

4.2. Key properties of the competitive equilibrium 

Before we present detailed quantitative results on the

cross-section, we characterize key equilibrium properties

by presenting key variables on the numerical grid and

across the book-to-market deciles. 

4.2.1. Optimal policy functions 

Fig. 4 uses the model’s solution on the ̂ K it - z it - g t - K t 

grid to plot the optimal investment-to-capital ratio, ̂  I it / ̂
 K it ,

against the detrended capital, ̂ K it , and the log firm-specific

productivity, z it . Panel A makes the plot in the disaster

state, with the demeaned aggregate productivity growth,

g t , set to the disaster size, λD . To examine the impact of

disasters, Panel B plots the difference between ̂

 I it / ̂
 K it , when

g t = 0 (the mean of normal states), and 

̂ I it / ̂
 K it when g t =

λD . In both panels, the cross-sectional average detrended

capital, K t , is set to be the median on its grid. 

Panel A shows that the optimal investment-to-capital

ratio, ̂ I it / ̂
 K it , rises with firms-specific productivity. Intu-

itively, more productive firms have higher shadow value

of capital and consequently invest more. In addition, ̂  I it / ̂
 K it 

decreases with capital. This pattern is a result of decreas-

ing returns to scale in the production function in Eq. (5) . 

In Panel A, only a portion of the ̂ K it - z it grid is plotted.

The missing region is exactly where firms exit the econ-

omy. Naturally, firms with low firm-specific productivity

are more likely to exit than firms with high firm-specific
productivity. In addition, because the fixed costs of pro-

duction are proportional to capital, firms with more cap-

ital have to pay higher costs than firms with less capital to

stay in production. As such, high- ̂  K firms are more likely to

exit than low- ̂  K firms. 

Panel B shows that the disaster risk affects the invest-

ment policy the most for firms that are close to the exit

boundary. For these firms, the differences in the optimal

investment-to-capital ratio between the mean normal state

and the disaster state are most visible. 

4.2.2. Risk and risk premiums 

Fig. 5 plots the true beta, βM 

it 
, and the expected risk

premium, E t [ R it+1 ] − r f t , against the detrended capital, ̂ K it ,

and the log firm-specific productivity, z it , for two values of

the detrended aggregate productivity growth, g t , the disas-

ter state, λD , and the mean normal state (zero). The cross-

sectional average detrended capital, K t , is again set to be

the median of its grid. 

Panel A shows that in the disaster state, firms that are

close to the exit boundary, such as low- z firms, are sub-

stantially riskier than firms that are far away from the exit

boundary, such as high- z firms. Accordingly, Panel C shows

that low- z firms earn substantially higher risk premiums

than high- z firms in the disaster state. In sharp contrast,

Panels B and D show that risk and risk premiums are

largely flat across firms in the mean normal state. 

Intuitively, the economic mechanism is similar qual-

itatively to, but turbocharged quantitatively relative to,

the asymmetry mechanism in Zhang (2005) . Because of

asymmetric adjustment costs, low- z firms are burdened

with more unproductive capital, finding it more difficult to

downsize than high- z firms. As such, low- z firms are riskier

than high- z firms in disasters. In contrast, in normal times,

even low- z firms do not have strong incentives to disinvest.

As such, the asymmetry mechanism fails to take strong ef-

fect, giving rise to weak spreads in risk and risk premiums
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Fig. 5. Disaster risk and risk premiums in the model. This figure plots the true beta, βM 
it 

, and the expected risk premium, E t [ R it+1 ] − r f t , on the ̂  K it - z it - g t - K t 
grid. ̂ K it is the detrended firm-level capital, z it log firm-specific productivity, g t the demeaned aggregate productivity growth, and K t the cross-sectional 

average detrended capital. We set g t to be the disaster size, λD , in Panels A and C and set g t to be zero, which is the mean of the normal states, in Panels 

B and D. K t is set to be the median of its grid in all panels. 

 

across firms. While Zhang describes the working of this 

mechanism in recessions, we turbocharge it in disasters. 

This asymmetry mechanism is related to our modeling 

of disasters as large drops in the aggregate productivity 

growth. Besides productivity disasters, Gourio (2012) also 

models disasters via capital destruction, which would seem 

to weaken the asymmetry mechanism in Fig. 5 . However, 

while capital destruction is realistic for wars, it is less obvi- 

ous for economic disasters. Because we aim to explain the 

stylized facts that feature the Great Depression, which is 

an economic disaster, we opt not to model capital destruc- 

tion. More important, Gourio motivates capital destruction 

in disasters as large negative shocks on the “quality” of 

capital: “Perhaps it is not the physical capital but the in- 

tangible capital (customer and employee value) that is de- 

stroyed during prolonged economic depressions (p. 2740).”

The accumulation of a large quantity of capital with dete- 

riorating quality in disasters likely strengthens the asym- 

metry mechanism. 
4.2.3. Value versus growth 

To shed light on the key properties of the book-to- 

market deciles, we simulate 20 0 0 artificial samples, each 

with 50 0 0 firms and 20 0 0 months. We start each simu-

lation by setting the initial capital stocks of all firms at 

unity and the initial log firm-specific productivity to its 

long-run mean, z . We drop the first 908 months to neu- 

tralize the impact of the initial condition and treat the re- 

maining 1092 months as from the economy’s stationary 

distribution. The sample size is comparable to the period 

from July 1926 to June 2017 in the data. We calculate the 

model moments on each artificial sample and report cross- 

simulation averaged results. To demonstrate the impact of 

disasters, we calculate cross-simulation averages separately 

on samples with and without disasters. 

Fig. 6 reports the results. From Panel A, value firms 

with high book-to-market have about 4.5 times more cap- 

ital than growth firms with low book-to-market. All firms 

have slightly more capital in the disaster samples than in 
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Fig. 6. Properties of the book-to-market deciles in the model. Results are based on 20 0 0 simulated economies, each with 50 0 0 firms and 20 0 0 months. We 

drop the first 908 months and treat the remaining 1092 months as from the model’s stationary distribution. On each artificial sample, we form the book- 
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interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the no-disaster samples, but the basic pattern across value

and growth holds with and without disasters. 

Moving to the log firm-specific productivity, z it , which

is the other firm-specific state variable besides the de-

trended capital, ̂ K it , Panel B shows that value firms have

much lower firm-specific productivity than growth firms.

The conditional volatility of z it is 0.5. As such, the average

z it of the value decile is almost 2.5 conditional volatilities

below its unconditional mean of z . Depending on whether

disasters are realized in a given sample or not, the av-

erage z it of the growth decile can be above z by up to

one-half of the conditional volatility. In total, the differ-

ence in the average z it between the extreme deciles is
about three conditional volatilities of z it in the disaster

samples. 

Panel B also shows that the relation between z it and

book-to-market is not monotonic: z it rises from the growth

decile to decile four and then drops at an increasing rate

from decile four to the value decile. The key is that, as

noted, the detrended capital, ̂ K it , is another firm-specific

state variable. The growth decile contains firms that have

the lowest ̂ K it but relatively high z it levels. At the other ex-

treme, the value decile contains firms that have the highest̂ K it but the lowest z it levels. 

From Panel C, growth firms have higher investment-to-

capital ratios, ̂ I it / ̂
 K it , than value firms. With disasters, the
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Table 8 

The CAPM regressions for the book-to-market deciles in the model. 

Results are based on 20 0 0 simulated economies, each with 50 0 0 firms and 20 0 0 months. We drop the first 908 months and treat the remaining 1092 

months as from the model’s stationary distribution. The mean excess return, E [ R e ], and the CAPM alpha, α, are in monthly percent. F GRS is the GRS F - 

statistic testing that the alphas are jointly zero across all ten deciles and p GRS its p -value. We report the cross-simulation averaged results as well as the 

2.5 and 97.5 percentiles for the alpha and beta, their t -statistics adjusted for heteroskedasticity and autocorrelations, F GRS , and p GRS . The R 2 is the goodness 

of fit coefficient for the time series CAPM regressions. 

L 2 3 4 5 6 7 8 9 H H-L 

Panel A: Samples with disasters ( F GRS = 12 . 67 , [1 . 35 , 40 . 28] ; p GRS = 0 . 01 , [0 . 00 , 0 . 20] ) 

E [ R e ] 0.75 0.74 0.74 0.74 0.75 0.77 0.81 0.86 0.96 1.20 0.46 

t R e 11.17 10.95 10.73 10.50 10.29 10.02 9.83 9.59 9.29 8.94 4.92 

α 0.08 0.06 0.04 0.03 0.01 −0.02 −0.05 −0.09 −0.15 −0.27 −0.35 

2.5 −0.03 −0.03 −0.04 −0.05 −0.08 −0.12 −0.19 −0.29 −0.42 −0.70 −0.86 

97.5 0.21 0.16 0.13 0.10 0.08 0.06 0.05 0.04 0.02 0.00 0.00 

t α 1.75 1.55 1.22 0.74 0.18 −0.54 −1.10 −1.60 −2.05 −2.32 −2.44 

2.5 −0.84 −0.91 −1.03 −1.53 −2.11 −3.01 −3.63 −4.19 −4.16 −4.33 −4.53 

97.5 4.43 3.99 3.56 2.92 2.29 1.90 1.39 1.07 0.57 0.05 0.05 

β 0.83 0.85 0.87 0.89 0.93 0.99 1.07 1.19 1.40 1.84 1.01 

2.5 0.66 0.73 0.79 0.84 0.87 0.90 0.94 1.00 1.13 1.47 0.52 

97.5 0.98 0.96 0.94 0.96 1.04 1.18 1.33 1.57 1.85 2.32 1.61 

t β 35.57 42.36 51.84 69.25 74.28 65.01 53.50 38.76 25.28 18.49 7.85 

2.5 8.64 12.52 17.67 22.78 18.11 12.68 10.11 8.22 7.10 7.45 3.47 

97.5 132.89 133.16 145.36 174.58 184.14 169.89 166.37 139.47 77.09 42.45 17.28 

R 2 0.77 0.78 0.79 0.79 0.80 0.81 0.83 0.85 0.86 0.87 0.57 

Panel B: Samples without disasters ( F GRS = 4 . 76 , [2 . 33 , 8 . 15] ; p GRS = 0 . 00 , [0 . 00 , 0 . 01] ) 

E [ R e ] 0.77 0.76 0.75 0.74 0.75 0.76 0.78 0.82 0.91 1.16 0.40 

t R e 23.37 23.02 22.48 22.05 22.08 21.79 22.75 23.93 25.51 28.69 7.72 

α 0.10 0.04 −0.02 −0.07 −0.10 −0.13 −0.07 0.02 0.13 0.35 0.25 

2.5 −0.04 −0.09 −0.16 −0.20 −0.24 −0.26 −0.20 −0.12 −0.00 0.17 0.02 

97.5 0.25 0.18 0.12 0.08 0.05 0.00 0.06 0.16 0.27 0.51 0.49 

t α 1.46 0.57 −0.22 −0.99 −1.37 −1.80 −0.93 0.32 1.83 4.25 2.26 

2.5 −0.55 −1.21 −2.21 −2.82 −3.24 −3.62 −2.78 −1.63 −0.01 1.77 0.18 

97.5 3.61 2.68 1.68 1.16 0.88 0.02 0.88 2.46 3.87 6.61 4.37 

β 0.83 0.90 0.96 1.02 1.06 1.10 1.06 1.00 0.97 1.01 0.18 

2.5 0.67 0.74 0.81 0.86 0.89 0.97 0.90 0.84 0.80 0.80 −0.09 

97.5 0.98 1.05 1.11 1.18 1.23 1.24 1.22 1.15 1.13 1.20 0.47 

t β 11.04 11.91 12.60 13.23 13.69 14.06 13.58 12.94 11.89 10.64 1.44 

2.5 8.56 9.05 10.40 10.63 11.07 11.51 10.92 10.29 9.55 7.66 −0.70 

97.5 14.75 16.68 15.84 16.53 16.60 17.57 17.53 17.10 15.10 13.49 3.59 

R 2 0.10 0.12 0.13 0.14 0.15 0.16 0.15 0.13 0.12 0.10 0.00 

 

 

 

average ̂  I it / ̂
 K it of the value decile is only 0.06% per month, 

whereas the average ̂ I it / ̂
 K it of the growth decile is 2.7%. 

The relation between ̂

 I it / ̂
 K it and book-to-market is strictly 

monotonic. Firms invest more in the no-disaster samples 

than the disaster samples, but the difference is small, rel- 

ative to the cross-sectional dispersion across the book-to- 

market deciles. 

Most important, Panel D shows that risk dynamics dif- 

fer drastically across the disaster and no-disaster samples. 

Without disasters, the red broken line shows that the true 

beta, βM 

it 
, is largely flat across the book-to-market deciles. 

In sharp contrast, with at least one disaster episode, the 

true beta rises monotonically, with an increasing speed, 

with book-to-market. The true beta starts at 0.05 for the 

growth decile, increases to 0.06 for decile five, to 0.12 

for decile nine, and then drastically to 0.21 for the value 

decile. As such, the relation between the true beta and 

book-to-market is convex. 

4.3. Explaining the failure of the CAPM 

Based on 20 0 0 artificial samples, Table 8 reports the 

quantitative results on the CAPM regressions under the 

benchmark calibration. Panel A shows the results in the 

disaster samples. The value premium is, on average, 0.46% 
per month, which is close to 0.48% in the data ( Table 1 ).

However, its t -value in the model is 4.92, which is large 

relative to 2.63 in the data. Similarly, the t -values for the 

deciles are often more than three times larger than those 

in the data, consistent with lower return volatilities in the 

model than those in the data. 

With disasters, Panel A shows that the market beta of 

the high-minus-low decile is high, 1.01 ( t = 7 . 85 ). The in-

creasing relation between the market beta and book-to- 

market is largely monotonic, rising from 0.83 for the low 

decile to 1.84 for the high decile. The market beta spread is 

large enough to make the CAPM alpha of the high-minus- 

low decile negative, −0 . 35% per month ( t = −2 . 44 ). Con-

sistent with the data, the GRS test rejects the null that the 

alphas are jointly zero across the ten deciles. However, the 

high-minus-low alpha estimate of 0.19% in the data lies 

outside the model’s 95% confidence interval and so is its 

t -value of 0.99 in the data. 

More important, Panel B shows that the model is ca- 

pable of explaining the failure of the CAPM in accounting 

for the value premium in samples without disasters. Av- 

eraged across samples without disasters, the high-minus- 

low decile earns, on average, 0.4% per month, which is not 

far from 0.47% in the 1963–2017 sample. In addition, the 

CAPM fails in the no-disaster samples. The CAPM regres- 
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Fig. 7. The CAPM regressions of the value premium in the model. The value premium is the value-minus-growth decile return. The market excess return 

is the market portfolio return value-weighted from all the firms minus the interest rate. Based on 20 0 0 simulations from the model, this figure reports 

the scatter plot and the fitted line from regressing the value premium on the market excess return. The fitted line in Panel A is estimated by stacking the 

monthly observations from all the samples with disasters and the fitted line in Panel B from all the samples without disasters. Both the value premium 

and market excess return are in monthly percent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 The scatter plot in Panel A of Fig. 7 shows three large blocks, with 

the left, middle, and right blocks from disasters, normal times, and re- 

coveries, respectively. The discreteness arises because we simulate from 

the discrete Markov chain with the transition probabilities in Eq. (13) . If 

we use a sufficiently large number of grid points for the normal states 

and also simulate the economy for a sufficiently long period to ensure re- 

mote grid points are visited, the discreteness would disappear. However, 

because the persistence in the aggregate demeaned productivity growth, 

ρg , is relatively low, 0.6, a five-point grid is sufficient to ensure accuracy 

for simulated moments. 
sion of the high-minus-low decile yields an alpha of 0.25%

( t = 2 . 26 ). The 95% confidence interval for the alpha spans

from 0.02% to 0.49%, and the interval for its t -value from

0.18 to 4.37. As such, the alpha estimate of 0.43% ( t = 1 . 89 )

in the data lies well within the model’s distribution. Also,

the market beta for the high-minus-low decile is small,

0.18 ( t = 1 . 44 ), which is not far from 0.07 ( t = 0 . 86 ) in the

data ( Table 1 ). The R 2 is in effect zero. Finally, again con-

sistent with data, the GRS test rejects that the alphas are

jointly zero across the ten deciles. 

4.3.1. Nonlinearity in the CAPM regressions 

To shed light on the driving force behind our key re-

sults in Table 8, Fig. 7 reports the scatter plots of the CAPM

regressions of the value-minus-growth decile in the model.

Panel A is the scatter plot from stacking the disaster sam-

ples underlying Panel A in Table 8 , and Panel B the scat-

ter plot from stacking the no-disaster samples underlying

Panel B in Table 8 . 

The basic pattern in Fig. 7 resembles Fig. 1 in the

US sample. From Panel A of Fig. 7 , the value-minus-

growth return covaries strongly with the market excess

return in the disaster samples. Both returns are large

and negative in disasters but large and positive in the

subsequent recoveries. As a result, the market beta for the

value-minus-growth decile is 1.06, which is a population

moment because of the large number of simulations.

However, the CAPM alpha is −0 . 39% per month, implying

that the unconditional CAPM does not hold in our dynamic

single-factor model. In contrast, Panel B shows that the

value-minus-growth return does not covary much with the

market excess return in the no-disaster samples. Without

the large swings in the same direction in the value-minus-

growth return and market excess return during disasters

and subsequent recoveries, the CAPM regression line is

largely flat, resembling the 1963–2017 US evidence ( Fig. 1 ).
The market beta is only 0.18, and the CAPM alpha is 0.25%

per month. 7 

4.3.2. Nonlinearity in the pricing kernel 

The disaster risk induces strong nonlinearity in the

pricing kernel, making the CAPM a poor proxy of the pric-

ing kernel. If the CAPM holds exactly, the pricing kernel

can be expressed as a linear function of the market ex-

cess return, R Mt+1 , i.e., M t+1 = l 0 + l 1 R Mt+1 , in which l 0 and

l 1 are constants ( Cochrane, 2005b ). Fig. 8 shows that the

pricing kernel in the model is far from a linear function of

the market excess return. Panel A reports the scatter plot

for regressing the pricing kernel on the market excess re-

turn based on the disaster samples. The regression yields

an intercept of 1.22, a slope of −0 . 14 , but an R 2 of only

21%, despite the model’s single-factor structure. The linear

CAPM fits poorly the observations from the disaster state,

with high realizations of the pricing kernel, and the ob-

servations from the recovery state, with low realizations

of the pricing kernel. From Panel B, the CAPM is an even

worse proxy for the pricing kernel in the no-disaster sam-

ples. The regression slope is only −0 . 03 , although the R 2 is

23% (because of missing large outliers). As such, the CAPM

fails badly in the no-disaster samples. 
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Fig. 8. The pricing kernel versus the CAPM in the model. The pricing kernel is given by M t+1 = � exp [ −( ̂  g ct+1 + g + g t ) /ψ][ exp [(1 −γ )( ̂ u t+1 + ̂ g ct+1 )] 
E t [ exp [(1 −γ )( ̂ u t+1 + ̂ g ct+1 )]] 

] 
1 /ψ−γ

1 −γ , in 

which ̂  g ct+1 is the detrended consumption growth, g is the balanced growth rate, g t the demeaned aggregate productivity growth, and ̂  u t the log utility-to- 

consumption ratio in Eq. (27) . The market excess return in monthly percent is the value-weighted market return minus the interest rate. Based on 20 0 0 

simulations, this figure reports the scatter plot and the fitted line from regressing the pricing kernel on the market excess return. The fitted line in Panel 

A is estimated by stacking observations from all the disaster samples, and the fitted line in Panel B by stacking observations from all the samples without 

disasters. In Panel A, the onset of disasters is in red plus, the onset of recoveries in green square, and other times in blue circle. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

4.4. Explaining the beta anomaly 

Our model also explains the flat beta-return relation. 

Applying the empirical procedure in Table 3 on artificial 

samples, we sort stocks at the end of each June based 

on preranking market betas from prior 60-month rolling 

windows, calculate monthly value-weighted decile returns 

for the subsequent year, and rebalance the deciles in June. 

Panel A of Table 9 shows that in artificial samples with 

disasters, the high-minus-low decile on the market beta 

earns, on average, only 0.06% per month ( t = 0 . 85 ). The 

preranking market beta sorts also yield a spread in the 

postranking betas, although its magnitude, 0.37 ( t = 2 . 57 ), 

is smaller than that in the data. The CAPM alpha of the 

high-minus-low decile is −0 . 24% , albeit insignificant ( t = 

−1 . 74 ). From Panel B, the results from the no-disaster sam- 

ples are quantitatively similar. The high-minus-low decile 

on the market beta earns, on average, only −0 . 02% ( t = 

−0 . 48 ). Sorting on the preranking beta continues to yield a 

significant spread in the postranking beta, 0.23 ( t = 1 . 98 ). 

As a result, the CAPM alpha for the high-minus-low beta 

decile is significantly negative, −0 . 21% ( t = −1 . 96 ). 

It is perhaps surprising that our risk-based model can 

reproduce the flat beta-return relation in simulations. The 

crux is that the rolling market beta contains a great deal 

of measurement errors and is, consequently, a poor proxy 

for the true market beta. Because of our single-factor 

structure, all aggregate variables are roughly one-to-one 

functions of the aggregate productivity growth, g t , includ- 

ing the price of risk, φMt , and the expected market risk 

premium, E t [ R Mt+1 ] − r f t . As such, the conditional CAPM 

holds roughly in theory (but not the unconditional CAPM), 

meaning that the true market beta can be backed out 
as (E t [ R it+1 ] − r f t ) / (E t [ R Mt+1 ] − r f t ) . The true market beta

differs from the true beta, βM 

it 
, which is calculated as 

(E t [ R it+1 ] − r f t ) /φMt . 

In untabulated results, we show that, not surprisingly, 

sorting on the true market beta yields large average re- 

turn spreads across extreme deciles in the model, with and 

without disasters. In samples with disasters, the average 

return spread is 1% per month ( t = 5 . 99 ). The uncondi-

tional CAPM fails to price these deciles, as the postrank- 

ing beta overshoots, giving rise to a negative CAPM alpha 

of −0 . 69% ( t = −2 . 49 ). In samples without disasters, the

high-minus-low decile on the true market beta earns, on 

average, 0.93%, which is highly significant. The postranking 

beta moves in the opposite direction as the true market 

beta, with a spread of −0 . 83 . Accordingly, the CAPM alpha 

is 1.6%, which is substantially higher than the average re- 

turn spread. 

To illustrate the measurement errors of rolling market 

betas as the proxy for the true market betas, the correla- 

tion between the true and rolling market betas is weakly 

positive, 2.84%, across the preranking market beta deciles 

in the disaster samples but weakly negative, −5 . 43% , in the 

no-disaster samples. Intuitively, based on 60-month rolling 

windows, the estimated rolling beta is basically the prior 

five-year averaged beta. In contrast, the true market beta 

accurately and immediately reflects changes in aggregate 

and firm-specific conditions. Within a given rolling win- 

dow, the true market beta often even mean reverts, giving 

rise to opposite rankings in rolling betas. 

Our quantitative results in the context of the beta 

anomaly add to a substantial body of simulation evi- 

dence on the importance of beta measurement errors 

in asset pricing tests. For instance, Miller and Scholes 
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Table 9 

The CAPM regressions for the preranking market beta deciles in the model. 

Results are based on 20 0 0 simulated economies, each with 50 0 0 firms and 20 0 0 months. We drop the first 908 months and treat the remaining 1092 

months as from the model’s stationary distribution. The mean excess return, E [ R e ], and the CAPM alpha, α, are in monthly percent. F GRS is the GRS F - 

statistic testing that the alphas are jointly zero across all ten deciles and p GRS its p -value. We report the cross-simulation averaged results as well as the 

2.5 and 97.5 percentiles for the alpha and beta, their t -statistics adjusted for heteroskedasticity and autocorrelations, F GRS , and p GRS . The R 2 is the goodness 

of fit coefficient for the time series CAPM regressions. 

L 2 3 4 5 6 7 8 9 H H-L 

Panel A: Samples with disasters ( F GRS = 12 . 55 , [0 . 90 , 43 . 35] ; p GRS = 0 . 04 , [0 . 00 , 0 . 54] ) 

E [ R e ] 0.77 0.79 0.81 0.83 0.82 0.85 0.85 0.85 0.85 0.83 0.06 

t R e 10.48 10.68 10.54 10.26 9.78 9.83 9.57 9.27 8.69 8.31 0.85 

α 0.03 0.05 0.04 0.02 −0.02 −0.03 −0.05 −0.09 −0.16 −0.21 −0.24 

2.5 −0.12 −0.04 −0.04 -0.06 −0.13 −0.15 −0.22 −0.29 −0.47 −0.55 −0.67 

97.5 0.16 0.15 0.12 0.11 0.09 0.09 0.09 0.08 0.07 0.04 0.11 

t α 0.70 1.36 1.17 0.46 −0.49 −0.53 −0.91 −1.23 −1.64 −2.15 −1.74 

2.5 −2.92 −1.17 −1.09 −1.75 −3.10 −3.33 −3.80 −4.06 −4.39 −4.78 −4.52 

97.5 3.66 3.77 3.26 2.84 2.29 2.33 2.33 2.17 1.84 1.05 1.86 

β 0.92 0.92 0.96 1.01 1.05 1.09 1.12 1.16 1.25 1.28 0.37 

2.5 0.78 0.84 0.90 0.93 0.94 0.96 0.95 0.95 0.94 0.92 −0.09 

97.5 1.12 1.03 1.04 1.08 1.17 1.24 1.31 1.41 1.64 1.72 0.93 

t β 35.79 48.38 62.91 74.19 61.90 48.67 41.79 36.71 28.14 20.98 2.57 

2.5 9.71 15.76 21.14 21.10 17.95 13.39 9.96 7.94 5.54 5.57 −2.85 

97.5 134.73 167.31 168.44 192.12 192.23 156.44 157.07 154.49 140.85 79.15 7.00 

R 2 0.81 0.81 0.82 0.82 0.82 0.84 0.84 0.84 0.85 0.85 0.21 

Panel B: Samples without disasters ( F GRS = 4 . 50 , [2 . 10 , 7 . 32] ; p GRS = 0 . 00 , [0 . 00 , 0 . 02] ) 

E [ R e ] 0.78 0.81 0.82 0.83 0.81 0.84 0.83 0.81 0.79 0.76 −0.02 

t R e 23.48 23.66 23.62 23.53 21.72 23.38 23.13 22.88 22.50 21.87 −0.48 

α −0.05 0.07 0.11 0.13 0.01 0.13 0.10 0.04 −0.05 −0.25 −0.21 

2.5 −0.17 −0.06 −0.04 −0.01 −0.14 −0.01 −0.04 −0.14 −0.20 −0.37 −0.39 

97.5 0.07 0.22 0.27 0.29 0.16 0.29 0.25 0.17 0.08 −0.12 −0.02 

t α −0.69 0.99 1.58 1.82 0.16 1.77 1.27 0.53 −0.67 −3.67 −1.96 

2.5 −2.43 −0.84 −0.47 −0.13 −1.77 −0.16 −0.55 −1.80 −2.73 −5.62 −3.91 

97.5 1.01 3.24 3.75 4.14 2.08 3.96 3.26 2.39 1.36 −1.91 −0.15 

β 1.03 0.92 0.88 0.87 0.99 0.88 0.91 0.96 1.05 1.26 0.23 

2.5 0.89 0.75 0.72 0.68 0.83 0.69 0.74 0.81 0.88 1.10 −0.00 

97.5 1.17 1.08 1.04 1.02 1.15 1.04 1.08 1.15 1.20 1.41 0.46 

t β 14.06 12.43 11.32 11.06 11.88 11.17 11.18 12.21 13.84 16.87 1.98 

2.5 11.01 9.35 8.88 8.28 9.19 8.06 8.43 9.32 10.32 13.45 −0.01 

97.5 17.00 16.61 14.24 15.16 15.76 13.54 14.07 14.84 16.66 21.02 4.19 

R 2 0.16 0.12 0.11 0.10 0.12 0.10 0.11 0.13 0.15 0.22 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1972) simulate random returns from the CAPM and find

that test results on simulated data are consistent with

those from the real data. 8 Gomes et al. (2003) and Carlson

et al. (2004) show that how size and book-to-market, and

Li et al. (2009) show how capital investment and new

equity issues, can dominate rolling betas in cross-sectional

regressions in simulations. Lin and Zhang (2013) show

how characteristics can dominate covariances in predicting

returns in the Daniel and Titman (1997) tests. In all, we

suggest that the evidence on the beta anomaly in the data

should be interpreted with extreme caution. 
8 In particular, Miller and Scholes (1972) conclude: “We have shown 

that much of the seeming conflict between [the empirical] results and 

the almost exactly contrary predictions of the underlying economic the- 

ory may simply be artifacts of the testing procedures used. The variable 

that measures the systematic covariance risk of a particular share is ob- 

tained from a first-pass regression of the individual company returns on 

a market index. Hence it can be regarded at best as an approximation to 

the perceived systematic risk, subject to the margin of error inevitable in 

any sampling process, if to nothing else. The presence of such errors of 

approximation will inevitably weaken the apparent association between 

mean returns and measured systematic risk in the critical second-pass 

tests.”

 

 

 

 

 

 

 

 

4.5. Explaining the poor performance of the consumption 

CAPM 

Based on 20 0 0 artificial samples, Table 10 reports the

average excess returns and consumption betas of the 25

size and book-to-market portfolios. Panels A, B, and C use

annual samples with disasters, quarterly samples without

disasters, and annual samples of the fourth-quarter con-

sumption growth without disasters, respectively, from the

model’s simulations. Their sample lengths match those in

the corresponding panels in the data ( Table 4 ). We again

time aggregate simulated monthly data to quarterly and

annual data, using the same procedure as in Table 7 . 

4.5.1. Explaining the higher average value premium in small 

firms 

The model succeeds in reproducing a higher average

value premium in small firms than in big firms. From Panel

A, which is based on annual samples with disasters, the

value premium is, on average, 9.68% per annum ( t = 6 . 67 )

in the smallest quintile but only 2.18% ( t = 2 . 37 ) in the

biggest quintile. Panel B shows that in quarterly samples

without disasters, the average value premium is 2.01% per
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Table 10 

The average excess returns and consumption betas for the 25 size and book-to-market portfolios in the model. 

Results are based on 20 0 0 simulations, each with 50 0 0 firms and 20 0 0 months. We drop the first 908 months 

and treat the remaining 1092 months as from the model’s stationary distribution. For each portfolio, we report 

its average excess return, E [ R e ], and its consumption beta, βC , as well as their t -values adjusted for heteroskedas- 

ticity and autocorrelations, t R e and t βC , respectively. Returns in Panels A and C are in annual percent and those 

in Panel B in quarterly percent. 

L 2 3 4 H L 2 3 4 H 

Panel A: Annual samples with disasters 

E [ R e ] t R e 

Small 13.69 14.54 15.95 17.90 23.37 12.34 11.38 10.77 10.43 10.26 

2 12.33 13.29 14.21 15.45 18.90 12.00 11.71 11.43 11.25 10.78 

3 12.05 12.17 12.42 12.95 14.62 10.00 12.01 11.91 11.33 10.33 

4 10.57 10.40 10.42 10.85 13.84 12.01 11.89 11.47 10.59 10.41 

Big 7.96 7.92 8.18 8.86 10.14 10.16 9.96 9.80 9.67 9.23 

βC t βC 

Small −0.64 −0.77 −0.93 −1.15 −1.28 −0.61 −0.68 −0.72 −0.74 −0.47 

2 −0.49 −0.59 −0.72 −0.89 −1.34 −0.55 −0.62 −0.69 −0.81 −0.97 

3 −0.43 −0.47 −0.53 −0.64 −0.74 −0.50 −0.56 −0.63 −0.72 −0.70 

4 −0.32 −0.33 −0.36 −0.46 −0.69 −0.41 −0.46 −0.52 −0.64 −0.79 

Big −0.07 −0.08 −0.10 −0.22 −0.23 −0.01 −0.04 −0.08 −0.28 −0.09 

Panel B: Quarterly samples without disasters 

E [ R e ] t R e 

Small 3.16 3.31 3.56 3.92 5.17 45.90 34.22 31.77 32.39 29.73 

2 2.89 3.08 3.24 3.45 4.09 29.73 31.09 31.73 32.26 28.72 

3 2.84 2.85 2.88 2.96 3.33 16.28 29.04 30.16 28.11 19.54 

4 2.53 2.48 2.47 2.53 3.19 23.35 23.40 21.99 18.86 18.87 

Big 1.93 1.91 1.96 2.07 2.42 13.66 13.75 14.14 15.06 14.71 

βC t βC 

Small 0.11 0.12 0.12 0.13 0.27 1.45 1.13 0.96 0.95 1.39 

2 0.12 0.12 0.13 0.13 0.18 1.10 1.04 1.10 1.09 1.14 

3 0.16 0.13 0.14 0.16 0.25 0.83 1.19 1.30 1.36 1.30 

4 0.16 0.18 0.22 0.24 0.24 1.33 1.54 1.71 1.56 1.37 

Big 0.74 0.93 1.08 0.94 0.85 4.83 6.32 7.60 6.51 4.74 

Panel C: Annual samples with fourth-quarter consumption growth without disasters 

E [ R e ] t R e 

Small 13.54 14.20 15.34 17.00 22.80 43.01 32.13 30.08 30.64 28.12 

2 12.35 13.21 13.91 14.86 17.76 28.37 29.75 30.32 30.72 27.52 

3 12.13 12.15 12.28 12.63 14.31 15.79 27.81 28.90 26.74 18.91 

4 10.75 10.53 10.48 10.72 13.66 22.29 22.50 21.19 18.31 18.16 

Big 8.13 8.04 8.25 8.75 10.28 13.21 13.29 13.76 14.64 14.31 

βC t βC 

Small 0.21 0.23 0.22 0.24 0.50 1.55 1.23 0.99 1.01 1.42 

2 0.24 0.22 0.24 0.25 0.31 1.27 1.17 1.23 1.18 1.11 

3 0.27 0.22 0.24 0.26 0.35 0.83 1.17 1.30 1.28 1.07 

4 0.26 0.28 0.30 0.32 0.36 1.21 1.38 1.38 1.27 1.09 

Big 0.82 0.97 1.08 0.95 0.84 3.22 4.03 4.62 4.02 2.82 
quarter ( t = 11 . 29 ) in the smallest quintile but only 0.49% 

( t = 2 . 29 ) in the biggest quintile. The results from the an- 

nual samples without disasters are largely similar (Panel 

C). 

The key mechanism underlying this result is decreas- 

ing returns to scale. The curvature parameter, ξ , in the 

production function in Eq. (5) is less than one (0.65 in 

the benchmark calibration). As a result, the detrended cap- 

ital, ̂ K it , is a firm-specific state variable in addition to 

the firm-specific productivity, z it . With constant returns to 

scale, ξ = 1 , the investment-to-capital ratio, ̂ I it / ̂
 K it , is in- 

dependent of capital, meaning that ̂ K it is not a separate 

state variable. When ξ < 1, ̂ I it / ̂
 K it clearly depends on 

̂ K it , 

with small firms investing faster than big firms ( Fig. 4 ). 

Fig. 5 shows further that big spikes in risk and risk pre- 
miums in the disaster states accrue to firms with small 

capital stock and low firm-specific productivity. This pat- 

tern implies that the expected return spread between the 

low- and high- z it firms is higher in small- ̂  K it firms than in 

big- ̂  K it firms. 

The disaster risk also plays a role in reproducing the 

higher value premium in small firms. The presence of 

the disaster state and the subsequent recovery state en- 

larges the cross-sectional dispersion in the detrended cap- 

ital, making firms more heterogeneous. As a result, we can 

perform independent sorts on size and book-to-market to 

form the 25 portfolios in simulated samples. 

Without showing the details, we can report that such 

independent sorts are infeasible in the Lin and Zhang 

(2013) model, which is in turn a simplified version of the 
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Table 11 

Cross-sectional regression tests of the consumption CAPM in the model. 

Results are based on 20 0 0 simulations, each with 50 0 0 firms and 20 0 0 months. We report cross-sectional tests of the consumption 

CAPM. Testing assets are the 25 size and book-to-market portfolios. Consumption betas are estimated from time-series regressions of 

portfolio excess returns on the aggregate consumption growth. Panel A uses annual consumption growth on the disaster samples, Panel 

B quarterly consumption growth on the no-disaster samples, and Panel C the fourth-quarter consumption growth on the no-disaster 

samples. φ0 is the intercept, φ1 the slope, t FM the Fama–MacBeth t -values, and t S the Shanken-adjusted t -values. χ2 is the χ2 -statistic 

testing that all the pricing errors, φ0 + αi , are jointly zero per Eq. (12.14) in Cochrane (2005b) . We adjust the variance-covariance 

matrix of the pricing errors with the Shanken (1992) method per Eq. (12.20) in Cochrane (2005b) . p χ2 is the p -value for the χ2 test, 

with 23 degrees of freedom. The estimates of φ0 and φ1 are in annual percent in Panels A and C and in quarterly percent in Panel B. 

We report the cross-simulation averaged results as well as the 2.5 and 97.5 percentiles. 

Panel A: Annual, with disasters Panel B: Quarterly, without disasters Panel C: Fourth-quarter, without disasters 

φ0 φ1 φ0 φ1 φ0 φ1 

Estimates 9.09 −6 . 48 3.34 −1.19 14.05 −3.40 

2.5 5.28 −13 . 46 3.14 −1.67 12.83 −6.81 

97.5 13.70 1.46 3.53 −0.72 15.37 −0.48 

t FM 15.57 −6 . 30 73.94 −13.67 63.93 −8.61 

2.5 6.55 −12 . 84 53.97 −18.11 49.83 −15.53 

97.5 52.25 1.48 83.30 −8.26 79.11 −1.28 

t S 8.22 −3 . 31 44.22 −9.14 36.59 −5.33 

2.5 3.81 −5 . 95 27.35 −10.94 19.28 −7.77 

97.5 25.46 1.45 58.20 −6.77 60.92 −1.26 

χ2 194.32 114.99 173.29 

2.5 35.69 41.59 17.16 

97.5 1171.4 418.4 1123.3 

p χ2 0.01 0.00 0.07 

2.5 0.00 0.00 0.00 

97.5 0.04 0.01 0.80 

R 2 0.61 0.30 0.16 

2.5 0.01 0.12 0.00 

97.5 0.95 0.49 0.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhang (2005) model. Because size and book-to-market are

negatively correlated in the cross-section, several portfo-

lios contain no firms in simulated samples, including the

small-growth and big-value portfolios. The aggregate shock

follows the normal distribution in the prior models, which

fail to generate a sufficient amount of firm heterogeneity

to allow for the five-by-five independent sorts on size and

book-to-market. 

4.5.2. Explaining the failure of the consumption CAPM 

More important, our model largely replicates the poor

performance of the consumption CAPM in the data

( Table 4 ). Table 10 shows that the consumption betas are

mostly insignificant and are all negative in the annual sam-

ples with disasters. In the second-stage cross-sectional re-

gressions, Table 11 shows that the intercept estimates are

all significantly positive. The estimates of the price of con-

sumption risk are all significantly negative, although its

95% confidence intervals are wide in the simulations. In

the annual samples with disasters (Panel A), the cross-

sectional R 2 is 61%, but its 95% confidence interval ranges

from 1% to 95%. As such, the cross-sectional R 2 seems

largely uninformative. The χ2 test strongly rejects the con-

sumption CAPM, as the 95% confidence interval of its p -

value ranges from 0.00 to 0.04. The cross-sectional R 2 is

30% in the quarterly samples without disasters (Panel B).

More important, the χ2 test again strongly rejects the con-

sumption CAPM, as the 95% confidence interval of its p -

value ranges from 0.00 to 0.01. 

Our model cannot explain the success of the

Jagannathan and Wang (2007) fourth-quarter consumption

growth model (Panel C). The intercept, φ0 , is economically

large and statistically significant, and the slope, φ , is
1 
again negative and significant. The p -value of the χ2 test

is 0.07. We interpret the insignificance as probably due to

the lack of power of the test, as only 25% of the observa-

tions are used. Intuitively, investors make the consumption

and portfolio choice decision every period in the model,

and the fourth-quarter does not stand out as special. 

We emphasize that in our model, a nonlinear con-

sumption CAPM holds exactly by construction, i.e.,

E t [ M t+1 R it+1 ] = 1 , in which M t+1 is the true pricing kernel

given by Eq. (27) . However, in the standard implementa-

tion of the consumption CAPM, the pricing kernel is spec-

ified as a linear function of the aggregate consumption

growth. With recursive utility, the pricing kernel depends

not only on the contemporaneous consumption growth but

also on (a nonlinear function of) the continuation value of

future utility. To quantify the impact of the specification

error of the pricing kernel in the context of our model, we

repeat the consumption CAPM tests but with the aggregate

consumption growth replaced by the true pricing kernel,

which we can compute in simulations. 

Table 12 details the two-stage tests. Panel A shows that

the estimated beta, ˆ βM , from regressing returns on the

true pricing kernel is generally higher for value firms than

for growth firms, going in the right direction as the av-

erage returns. The ˆ βM estimates are also all significantly

positive, both in annual samples with disasters and in

quarterly samples without disasters. The magnitude of the

regression-based estimates of ˆ βM is largely in line with

that of the true beta calculated on the grid (Panel D of

Fig. 6 ). Also, the magnitude of ˆ βM in samples without dis-

asters is roughly three times of that in samples with dis-

asters. Intuitively, the average returns are comparable in

magnitude across the two types of samples. However, the
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Table 12 

Two-stage cross-sectional regression tests of the consumption CAPM with the true pricing kernel in 

the model. 

Results are based on 20 0 0 simulations, each with 50 0 0 firms and 20 0 0 months. For each of the 

25 size and book-to-market portfolios, we report the consumption beta, ˆ βM , estimated from re- 

gressing excess returns on the true pricing kernel, M t+1 , as well as the t -value adjusted for het- 

eroskedasticity and autocorrelations, t ˆ βM . We also report the second-stage cross-sectional regres- 

sions, including the intercept, ˆ φ0 ; the slope, ˆ φM ; the Fama–MacBeth t -value, t FM ; and the Shanken- 

adjusted t -value, t S . χ
2 is the χ2 -statistic testing that all the pricing errors, φ0 + αi , are jointly zero 

per Eq. (12.14) in Cochrane (2005b) . We adjust the variance-covariance matrix of the pricing errors 

with the Shanken (1992) method per Eq. (12.20) in Cochrane (2005b) . p χ2 is the p -value for the χ2 

test, with 23 degrees of freedom. We report the cross-simulation averages as well as the 2.5 and 

97.5 percentiles. 

Panel A: First-stage time series regressions 

L 2 3 4 H L 2 3 4 H 

ˆ βM t ˆ βM 

Annual samples with disasters 

Small 0.04 0.04 0.04 0.05 0.07 8.26 7.87 7.58 7.20 7.08 

2 0.03 0.04 0.04 0.04 0.05 8.51 8.25 8.04 7.85 7.71 

3 0.03 0.03 0.03 0.04 0.04 8.26 8.53 8.34 8.03 7.49 

4 0.03 0.03 0.03 0.03 0.04 8.94 8.79 8.63 8.16 8.47 

Big 0.02 0.02 0.02 0.02 0.03 8.79 8.53 8.26 7.76 7.49 

Quarterly samples without disasters 

Small 0.12 0.13 0.14 0.15 0.25 7.78 5.74 5.20 5.32 6.11 

2 0.12 0.12 0.13 0.14 0.17 5.09 5.26 5.36 5.49 5.17 

3 0.12 0.12 0.12 0.12 0.15 2.99 5.10 5.32 4.95 3.70 

4 0.11 0.11 0.11 0.11 0.15 4.29 4.27 4.08 3.53 3.57 

Big 0.09 0.10 0.10 0.10 0.12 2.66 2.81 2.91 2.99 2.90 

Panel B: Second-stage cross-sectional regressions 

Annual, with disasters Quarterly, without disasters 

ˆ φ0 
ˆ φM 

ˆ φ0 
ˆ φM 

Estimates 0.01 5.19 0.02 0.11 

2.5 −0 . 01 0.36 0.01 0.06 

97.5 0.06 7.69 0.02 0.26 

t FM 2.43 8.35 19.27 15.46 

2.5 −1 . 48 3.17 7.44 8.76 

97.5 17.71 18.90 30.21 20.65 

t S 0.90 3.56 6.82 5.42 

2.5 −0 . 60 1.54 1.93 3.78 

97.5 5.65 7.09 14.23 8.04 

χ2 30.96 26.87 

2.5 9.09 10.99 

97.5 119.08 55.42 

p χ2 0.55 0.51 

2.5 0.00 0.00 

97.5 1.00 0.98 

R 2 0.89 0.43 

2.5 0.55 0.13 

97.5 0.97 0.79 
pricing kernel’s volatility is higher in samples with dis- 

asters than without disasters, meaning that the realized 

pricing of risk, φMt , is lower in samples without disasters. 

Accordingly, the ˆ βM estimates must be higher in samples 

without disasters to match the average returns that are 

comparable to those with disasters. 

In second-stage cross-sectional regressions, Panel B 

shows that with disasters, the intercept, ˆ φ0 , is econom- 

ically small, only 1% per annum. Although its Fama–

MacBeth t -value is significant, 2.43, the Shanken-adjusted 

t -value is not, only 0.9. The price of consumption risk, ˆ φM 

, 

is 5.19, which is highly significant. The χ2 test fails to re- 

ject the null that all the pricing errors are jointly zero 

across the testing assets ( p -value = 0.55). In addition, the 
cross-sectional R 2 is high, 89%, and its 95% confidence in- 

terval spans from 55% to 97%. Interestingly, even the true 

pricing kernel does not perform perfectly in the standard 

consumption CAPM test. The culprit is the test’s uncondi- 

tional form. The regression-based beta, ˆ βM , is estimated on 

the full sample and is assumed to be constant. In contrast, 

the true beta, βM 

it 
, is time-varying, as shown in Fig. 5 . 

In quarterly samples without disasters, the true model’s 

performance deteriorates. The intercept is 2% per quar- 

ter, which is also significant per the Fama–MacBeth and 

Shanken t -values. The price of consumption risk is only 

0.11 but highly significant. The χ2 test again fails to 

reject the null that all the pricing errors are jointly zero 

across the testing assets ( p -value = 0.51). In addition, the 
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Fig. 9. The pricing kernel versus the aggregate consumption growth in the model. The pricing kernel is given by M t+1 = � exp [ −( ̂  g ct+1 + g + g t ) /ψ] 

[ exp [(1 −γ )( ̂ u t+1 + ̂ g ct+1 )] 
E t [ exp [(1 −γ )( ̂ u t+1 + ̂ g ct+1 )]] 

] 
1 /ψ−γ

1 −γ , in which ̂  g ct+1 is the detrended consumption growth, g is the balanced growth rate, g t the demeaned aggregate productiv- 

ity growth, and ̂  u t the log utility-to-consumption ratio in Eq. (27) . Results are based on 20 0 0 simulations. This figure reports the scatter plot and the fitted 

line from regressing the pricing kernel on aggregate consumption growth. We time aggregate monthly consumption to annual consumption in Panel A and 

to quarterly consumption in Panel B. The fitted line in Panel A is estimated by stacking time-aggregated annual observations from all the samples with 

disasters and the fitted line in Panel B by stacking time-aggregated quarterly observations from all the samples without disasters. Consumption growth is 

in percent. In Panel A, the onset of disasters is in red plus, the onset of recoveries in green square, and normal times in blue circle. Panel B has only blue 

circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cross-sectional R 2 is lower, only 43%, and its 95% confi-

dence interval ranges from 13% to 79%. Intuitively, without

the extreme observations from disasters and subsequent

recoveries, the regression-based beta, ˆ βM , from projecting

returns on the true pricing kernel is a noisy proxy for the

true beta. 

Fig. 9 sheds further light on the detachment of the true

pricing kernel from the consumption growth in our model.

Panel A reports the scatter plot and fitted line from re-

gressing the pricing kernel on the contemporaneous con-

sumption growth by stacking observations from all the

disaster samples. Despite the model’s single-factor struc-

ture, the regression R 2 is only 0.24%, and the slope is only

weakly negative, −0 . 027 . Perhaps surprisingly, the onset of

disasters is not associated with particularly low contempo-

raneous consumption growth and the onset of recoveries

not associated with particularly high consumption growth.

Intuitively, when a disaster shock hits, the pricing kernel

spikes up immediately, as the investor is anticipating mul-

tiple years of extremely bad times. However, consump-

tion smoothing kicks in immediately as well. As forward-

looking as the stock market return, real investment falls

immediately to smooth consumption. Consequently, con-

sumption only falls cumulatively over multiple years. Anal-

ogously, when the economy switches from the disaster to

recovery state, the pricing kernel drops, and the market

return spikes up immediately. Real investment increases

right away, but consumption raises only gradually. 

Consumption smoothing also explains why the CAPM

performs better than the consumption CAPM in the disas-

ter samples in our model, echoing Campbell and Cochrane

(20 0 0) . Comparing Panel A of Fig. 9 with Panel A of

Fig. 8 shows that the market excess return is much more
responsive than the consumption growth to the disaster

shock. The key is again the forward-looking nature of the

pricing kernel, the stock market, and real investment as

well as the smoothed nature of consumption. 

4.6. Comparative statics 

To gain further insights into the economic mechanism,

we conduct comparative statics on a wide array of param-

eters. We group the parameters into three categories: (i)

disaster dynamics: the disaster size, λD , the disaster per-

sistence, θ , the disaster probability, η, the recovery per-

sistence, ν , and the recovery size, ν; (ii) technology: the

adjustment costs parameters, a + , a −, c + , and c −, the cur-

vature in production, ξ , the fixed costs parameter, f , the

liquidation parameter, s , the reorganization costs, κ , and

the delisting return, ˜ R ; as well as (iii) preferences: the risk

aversion, γ , and the intertemporal elasticity of substitu-

tion, ψ . In each experiment, we only vary one parameter

while keeping all the others unchanged from the bench-

mark calibration. 

Table 13 details comparative statics for the CAPM re-

gressions of the book-to-market deciles. From the first two

columns, increasing the disaster size and persistence raises

the average value premium and exacerbates the failure

of the CAPM in samples without disasters. Intuitively, a

larger disaster, or a more persistent disaster, strengthens

nonlinear disaster dynamics, making the linear CAPM a

poorer proxy for the pricing kernel, especially in normal

times. Raising the disaster probability, η, goes in the same

direction, but its quantitative impact is small. Intuitively,

η mainly determines the percentage of samples with

at least one disaster out of 20 0 0 simulations. However,
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Table 13 

Comparative statics, the CAPM regressions of the book-to-market deciles. 

Results are averaged across 20 0 0 simulations. E [ R e ] is the average return, α the CAPM alpha, and β the market beta of the value-minus-growth decile. 

E [ R e ] and α are in monthly percent. The t -values are adjusted for heteroskedasticity and autocorrelations. Each column shows results from one experiment. 

In each column, we vary only one parameter while keeping the others unchanged from the benchmark calibration. The alternative parameter values in the 

comparative statics are λD = −3 . 25% , θ = 0 . 985 , η = 3% / 12 , ν = 0 . 98 , λR = 2% , a + = 0 . 045 , a − = 0 . 065 , c + = 100 , c − = 200 , ξ = 0 . 7 , f = 0 . 01 , s = 0 . 15 , 

κ = 0 . 35 , ̃  R = −16% , γ = 6 , and ψ = 2 . The simulation design in each experiment is identical to that in Table 8 . 

λD θ η ν λR a + a − c + c − ξ f s κ ˜ R γ ψ 

Panel A: Samples with disasters 

E [ R e ] 0.75 0.41 0.49 0.45 0.45 0.30 0.53 0.44 0.43 0.38 0.51 0.22 0.39 0.44 0.55 0.52 

t R e 6.67 4.29 4.87 4.54 4.75 3.68 5.17 4.72 4.53 5.09 5.09 3.60 4.31 4.72 6.35 4.55 

α −0.46 −0.63 −0.32 −0.37 −0.35 −0.25 −0 . 34 −0 . 34 −0.39 −0.52 −0.29 −0.19 −0 . 39 −0.36 −0 . 40 −0.44 

t α −2.47 −2.96 −2.34 −2.62 −2.49 −2.10 −2 . 37 −2 . 58 −2.65 −2.88 −2.11 −2.08 −2 . 69 −2.49 −2 . 41 −2.65 

β 1.09 1.08 1.03 1.00 0.99 0.69 1.08 1.05 1.04 1.11 1.00 0.54 0.98 1.01 0.95 0.98 

t β 8.04 8.40 8.08 8.07 7.91 6.85 7.87 7.97 8.11 7.66 7.85 7.86 8.10 8.01 7.66 7.89 

Panel B: Samples without disasters 

E [ R e ] 0.62 0.53 0.42 0.39 0.39 0.21 0.41 0.37 0.40 0.40 0.41 0.22 0.37 0.39 0.52 0.43 

t R e 10.84 9.53 7.95 7.52 7.55 3.94 7.95 7.63 7.69 10.40 7.46 4.45 7.14 7.51 9.36 8.07 

α 0.51 0.44 0.31 0.26 0.25 −0.06 0.28 0.31 0.26 0.22 0.23 0.15 0.22 0.25 0.40 0.34 

t α 3.26 3.07 2.71 2.28 2.22 −0.61 2.47 2.98 2.34 2.08 1.93 1.37 1.98 2.22 2.79 2.75 

β 0.09 0.09 0.14 0.17 0.17 0.34 0.16 0.08 0.17 0.21 0.23 0.09 0.18 0.18 0.11 0.10 

t β 0.68 0.65 1.12 1.35 1.41 2.94 1.23 0.59 1.37 1.74 1.79 0.76 1.48 1.40 0.86 0.85 

Table 14 

Comparative statics, the CAPM regressions of the preranking market beta deciles. 

Results are averaged across 20 0 0 simulations. E [ R e ] is the average return, α the CAPM alpha, and β the market beta of the high-minus-low market beta 

decile. E [ R e ] and α are in monthly percent. The t -values are adjusted for heteroskedasticity and autocorrelations. Each column shows results from one 

experiment. In each column, we vary only one parameter while keeping the others unchanged from the benchmark calibration. The alternative parameter 

values in the comparative statics are λD = −3 . 25% , θ = 0 . 985 , η = 3% / 12 , ν = 0 . 98 , λR = 2% , a + = 0 . 045 , a − = 0 . 065 , c + = 100 , c − = 200 , ξ = 0 . 7 , f = 0 . 01 , 

s = 0 . 15 , κ = 0 . 35 , ̃  R = −16% , γ = 6 , and ψ = 2 . The simulation design in each experiment is identical to that in Table 9 . 

λD θ η ν λR a + a − c + c − ξ f s κ ˜ R γ ψ 

Panel A: Samples with disasters 

E [ R e ] 0.08 0.01 0.08 0.07 0.07 0.05 0.07 0.06 0.06 0.03 0.06 −0 . 81 0.06 0.06 0.06 0.06 

t R e 1.00 0.25 1.08 0.97 0.92 0.68 0.90 0.88 0.83 0.88 0.86 −4 . 26 0.84 0.84 0.84 0.84 

α −0 . 30 −0 . 22 −0 . 20 −0 . 24 −0 . 24 −0 . 22 −0 . 24 −0 . 23 −0 . 24 −0 . 25 −0 . 24 −1 . 09 −0 . 24 −0 . 24 −0 . 24 −0 . 24 

t α −1 . 69 −1 . 47 −1 . 62 −1 . 81 −1 . 74 −1 . 68 −1 . 70 −1 . 71 −1 . 78 −1 . 86 −1 . 73 −3 . 23 −1 . 74 −1 . 76 −1 . 77 −1 . 74 

β 0.33 0.24 0.35 0.38 0.37 0.33 0.37 0.37 0.37 0.34 0.37 0.66 0.37 0.37 0.37 0.37 

t β 2.46 2.28 2.56 2.79 2.62 2.29 2.56 2.53 2.63 2.92 2.58 3.18 2.56 2.61 2.55 2.59 

Panel B: Samples without disasters 

E [ R e ] −0 . 03 −0 . 03 −0 . 02 −0 . 02 −0 . 01 −0 . 03 −0 . 02 −0 . 02 −0 . 02 0.00 −0 . 02 −0 . 07 −0 . 02 −0 . 02 −0 . 02 −0 . 02 

t R e −0 . 50 −0 . 55 −0 . 48 −0 . 51 −0 . 29 −0 . 52 −0 . 34 −0 . 32 −0 . 47 0.01 −0 . 48 −1 . 38 −0 . 47 −0 . 49 −0 . 40 −0 . 49 

α −0 . 27 −0 . 25 −0 . 21 −0 . 21 −0 . 20 −0 . 21 −0 . 19 −0 . 19 −0 . 21 −0 . 16 −0 . 21 −0 . 25 −0 . 21 −0 . 21 −0 . 20 −0 . 21 

t α −1 . 89 −1 . 90 −2 . 00 −1 . 97 −1 . 85 −2 . 04 −1 . 82 −1 . 80 −1 . 98 −1 . 53 −1 . 95 −2 . 42 −1 . 95 −1 . 97 −1 . 90 −1 . 97 

β 0.22 0.22 0.23 0.23 0.23 0.23 0.22 0.22 0.23 0.19 0.23 0.24 0.23 0.23 0.23 0.23 

t β 1.87 1.87 2.03 1.98 1.97 2.13 1.89 1.89 2.01 1.72 1.98 2.09 1.97 1.99 2.02 1.99 
conditioning on at least one disaster appearing in a given 

sample, the nonlinear dynamics are mostly governed by 

the disaster size and persistence. 

The recovery size and persistence have little impact on 

the magnitude of the average value premium and the per- 

formance of the CAPM. Intuitively, risk and risk premiums 

are mostly determined by the dynamics in bad times, par- 

ticularly disasters, in which the representative household’s 

marginal utility is the highest. In contrast, the marginal 

utility is the lowest in the recovery state, giving rise to 

small spreads in risk and risk premium between value and 

growth firms. 

The upward nonconvex costs parameter, a + , and its 

downward counterpart, a −, work in the opposite direc- 

tion. While increasing a + reduces the average value pre- 

mium and its CAPM alpha in normal times, increasing a −

does the opposite. Intuitively, the a − effect works through 
the asymmetry mechanism. A high value of a − means that 

value firms face a higher hurdle in reducing their unpro- 

ductive capital in the disaster state, giving rise to higher 

risk and risk premiums. 

Why does the upward nonconvex costs parameter, a + , 
work differently? Intuitively, firms disinvest very infre- 

quently. Across simulations, on average, only 0.6% of the 

firm-month observations have negative investment. Such a 

low disinvestment frequency means that a + is the main 

parameter that determines the magnitude of nonconvex 

adjustment costs, a + K it . A lower a + means that firms 

would in general have higher capital, especially value 

firms. When a disaster hits, value firms are burdened 

with more unproductive capital, reinforcing the asymmetry 

mechanism. As such, a lower a + value increases the aver- 

age value premium and its CAPM alpha in the no-disaster 

samples. 
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Table 15 

Comparative statics, the consumption CAPM test on the 25 size and book-to-market portfolios. 

Results are averaged across 20 0 0 simulations. We report cross-sectional tests of the consumption CAPM. Testing assets are the 25 size and book-to-market 

portfolios. Consumption betas are from time series regressions of portfolio excess returns on the aggregate consumption growth. Panel A uses annual 

consumption growth on the disaster samples and Panel B quarterly consumption growth on the no-disaster samples. φ0 is the intercept, φ1 the slope, t FM 

the Fama–MacBeth t -values, and t S the Shanken-adjusted t -values. χ2 is the χ2 -statistic testing that all the pricing errors, φ0 + αi , are jointly zero per Eq. 

(12.14) in Cochrane (2005b) . We adjust the variance-covariance matrix of the pricing errors with the Shanken (1992) method per Eq. (12.20) in Cochrane 

(2005b) . p χ2 is the p -value for the χ2 test, with 23 degrees of freedom. The estimates of φ0 and φ1 are in annual percent in Panel A and in quarterly 

percent in Panel B. Each column shows results from one experiment. In each column, we vary only one parameter while keeping the others unchanged from 

the benchmark calibration. The alternative parameter values are λD = −3 . 25% , θ = 0 . 985 , η = 3% / 12 , ν = 0 . 98 , λR = 2% , a + = 0 . 045 , a − = 0 . 065 , c + = 100 , 

c − = 200 , ξ = 0 . 7 , f = 0 . 01 , s = 0 . 15 , κ = 0 . 35 , ̃  R = −16% , γ = 6 , and ψ = 2 . 

λD θ η ν λR a + a − c + c − ξ f s κ ˜ R γ ψ 

Panel A: Annual samples with disasters 

φ0 9.04 10.06 8.62 9.16 9.66 9.01 9.02 8.91 9.04 8.95 8.96 10.26 9,01 9.01 8.91 9.02 

t FM 14.53 12.59 12.72 13.97 14.35 15.22 15.22 14.99 15.53 15.32 15.31 13.35 15.18 15.18 15.06 15.27 

t S 7.92 7.63 6.95 7.35 7.52 7.97 7.97 7.90 8.09 7.98 8.02 9.96 7.98 7.97 7.86 7.94 

φ1 −7 . 15 −5 . 64 −7 . 06 −7 . 68 −7 . 91 −6 . 57 −6 . 56 −6 . 62 −6 . 57 −6 . 23 −6 . 59 −3 . 17 −6 . 55 −6 . 55 −6 . 57 −6 . 65 

t FM −6 . 56 −4 . 64 −5 . 80 −5 . 99 −6 . 29 −6 . 37 −6 . 37 −6 . 38 −6 . 42 −6 . 37 −6 . 40 −4 . 74 −6 . 35 −6 . 31 −6 . 33 −6 . 42 

t S −3 . 71 −2 . 65 −3 . 17 −3 . 09 −3 . 26 −3 . 32 −3 . 32 −3 . 33 −3 . 37 −3 . 32 −3 . 35 −3 . 90 −3 . 32 −3 . 29 −3 . 30 −3 . 34 

χ2 166.8 208.8 132.1 147.5 157.8 174.2 174.5 172.8 183.2 186.9 181.0 464.7 175.07 174.5 170.81 174.9 

p χ2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 

R 2 0.66 0.48 0.66 0.64 0.64 0.63 0.62 0.63 0.62 0.63 0.63 0.56 0.62 0.62 0.63 0.63 

Panel B: Quarterly samples without disasters 

φ0 3.34 3.34 3.34 3.33 3.34 3.34 3.34 3.34 3.34 3.35 3.34 2.99 3.34 3.34 3.34 3.34 

t FM 73.61 73.86 72.80 73.25 73.42 73.48 73.57 73.82 74.28 73.25 73.27 60.72 73.57 73.47 74.04 73.42 

t S 44.17 43.88 43.33 43.42 43.96 44.05 44.10 44.43 44.12 44.02 44.05 38.75 44.20 43.98 44.23 43.87 

φ1 −1 . 19 −1 . 21 −1 . 20 −1 . 28 −1 . 21 −1 . 19 −1 . 19 −1 . 18 −1 . 21 −0 . 99 −1 . 19 −1 . 09 −1 . 19 −1 . 19 −1 . 20 −1 . 19 

t FM −13 . 64 −13 . 79 −13 . 75 −13 . 78 −13 . 66 −13 . 65 −13 . 66 −13 . 59 −13 . 81 −13 . 15 −13 . 58 −11 . 06 −13 . 61 −13 . 68 −13 . 73 −13 . 66 

t S −9 . 16 −9 . 14 −9 . 16 −9 . 06 −9 . 13 −9 . 16 −9 . 17 −9 . 15 −9 . 19 −8 . 74 −9 . 12 −7 . 64 −9 . 14 −9 . 17 −9 . 17 −9 . 15 

χ2 123.0 135.6 96.7 107.3 136.5 112.9 112.5 114.1 116.2 110.0 111.2 242.4 112.40 112.7 117.60 112.1 

p χ2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R 2 0.29 0.30 0.30 0.30 0.29 0.29 0.29 0.29 0.30 0.27 0.29 0.40 0.29 0.30 0.30 0.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 . 
Similarly, the upward and downward convex costs pa-

rameters, c + and c −, respectively, work in the opposite

direction, but their impact is small. A higher c − works

through the asymmetry mechanism by restricting the flex-

ibility of value firms in downsizing in disasters, giving rise

to higher risk and risk premiums. However, because of the

vast majority of positive investment, the upward parame-

ter, c + , mainly determines the magnitude of convex costs.

A lower c + implies that firms have more capital in general,

especially value firms, reinforcing the asymmetry mecha-

nism. 

In addition, increasing the curvature parameter, ξ , in-

creases the value premium in the no-disaster samples. In-

creasing the fixed costs parameter, f , raises the value pre-

mium but decreases its CAPM alpha in the no-disaster

samples. A higher f means a higher operating leverage for

value firms, increasing the value premium ( Carlson et al.,

2004 ). However, a higher f also means higher market beta

for the value premium, decreasing its CAPM alpha. 

The next three technological parameters involve entry

and exit, including the liquidation value, s , the reorgani-

zation costs, κ , and the delisting return, ˜ R . Increasing s

reduces the average value premium and its CAPM alpha.

Intuitively, with a higher s , in the event of exit, share-

holders get to extract a higher liquidation value of sK it ,

which is in effect a free abandonment option. This option

acts as an insurance against the disaster risk. The aban-

donment option is especially attractive for shareholders of

value firms, which tend to have more unproductive capital

than growth firms. Consequently, instead of facing asym-

metric adjustment costs in disasters, the shareholders opt
to exit, thereby reducing the risk for value firms relative to

growth firms. 

In addition, a higher reorganization cost, κ , reduces the

value premium and its CAPM alpha, but the effect is small

in the no-disaster samples. The impact of the delisting

return, ˜ R , is negligible. Finally, increasing the risk aver-

sion, γ , or the intertemporal elasticity of substitution, ψ ,

strengthens the nonlinear dynamics, raising the value pre-

mium and its CAPM alpha in the no-disaster samples. 

For completeness, Table 14 reports comparative statics

for the market beta deciles. The results are quantitatively

similar to those in the benchmark calibration. The only ex-

ception is the liquidation value parameter, s . Raising s from

zero to 15% reduces the average return of the high-minus-

low market beta decile from 0.06% per month ( t = 0 . 85 )

in the benchmark calibration to −0 . 81% ( t = −4 . 26 ) in the

disaster samples in Panel A. As noted, a positive s gives the

shareholders an abandonment option, which reduces risk

and risk premiums. The low beta decile earns 0.59% (unt-

abulated), which is lower than 0.77% with s = 0 . More im-

portant, the high beta decile earns only −0 . 22% , which is

substantially lower than 0.83% with s = 0 . Intuitively, with

a higher s at 15%, many high beta stocks exit the econ-

omy in the disaster state, taking the large negative delist-

ing return of −12 . 33% . This effect is largely absent in Panel

B without disasters. 

Finally, Table 15 reports comparative statics for the con-

sumption CAPM tests. Without going through the details,

we can report that the quantitative results are largely

similar to those in the benchmark calibration shown in
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5. Conclusion 

Rare disasters help explain the value premium puzzle 

that value stocks earn higher average returns than growth 

stocks, despite their similar market betas. In a general 

equilibrium production economy with disasters and het- 

erogenous firms, value stocks are more exposed to the dis- 

aster risk than growth stocks. More important, the disaster 

risk induces strong nonlinearity in the pricing kernel. In fi- 

nite samples, in which disasters are not materialized, the 

estimated market beta fails to measure the higher expo- 

sures of value stocks to disasters than growth stocks. This 

strong nonlinearity allows the model to explain the failure 

of the CAPM in the post-1963 sample. In contrast, in fi- 

nite samples in which disasters are materialized, the CAPM 

does much better in explaining the value premium. 

In addition, due to severe beta measurement errors, the 

relation between the preranking market beta and the av- 

erage return is flat in the model’s simulations, despite a 

strong positive relation between the true beta and the ex- 

pected return. As such, the model also explains the beta 

anomaly. 

A fundamental innovation of our work relative to prior 

theoretical models is general equilibrium in which con- 

sumption and the pricing kernel are endogenous. Endoge- 

nous consumption makes it feasible for us to quantify 

the performance of the consumption CAPM within our 

model. Despite a nonlinear consumption CAPM structure, 

our model succeeds in replicating the failure of the stan- 

dard consumption CAPM, in which the pricing kernel is 

severely misspecified as a linear function of the aggre- 

gate consumption growth. In totality, our extensive simula- 

tion results suggest that the poor performance of the (con- 

sumption) CAPM in the data should be interpreted with 

caution. The widely documented empirical failures of stan- 

dard asset pricing models might have more to do with the 

deficiencies of standard empirical tests rather than defi- 

ciencies of economic theory. 

Appendix 

A.1. Solving the firms’ problem 

As an intermediate step for solving the detrended 

value function in Eq. (29) , we solve for the log utility-to- 

consumption ratio, ̂ u t , by iterating on Eq. (26) and calcu- 

late M t+1 from Eq. (27) , which only depends on g t , g t+1 , 

and K t . We then solve firms’ problem by iterating on ̂ 
 ( ̂  K it , Z it , g t , K t ) 

= max 
{ χit } 

[
max 
{ ̂  K it+1 } 

̂ D it + E t [ M t+1 ̂
 V ( ̂  K it+1 , Z it+1 , g t+1 , K t+1 )] 

× exp (g xt ) , s ̂  K it 

]
. (A.1) 

We use 100 grid points for the detrended capital, ̂ K it . 

The lower bound of the ̂ K it grid is 0.01 and the upper 

bound 25. The ̂ K it grid is formed recursively, with 

̂ K j = ̂ K j−1 + c 1 exp (c 2 ( j − 2)) , in which j = 2 , ..., 100 is the in- 

dex of grid points, and c 1 and c 2 are two constant param- 

eters chosen to provide the desired number of grid points 
and the grid’s upper bound, given a predetermined lower 

bound of ̂ K 1 = 0 . 01 . A seven-point grid for the aggregate 

productivity growth, g t , is constructed as in Section 3.3 and 

a nine-point grid for the log firm-specific productivity, z it , 

is formed via the Rouwenhorst (1995) procedure. To form 

the K t grid, we use 15 even spaced points from 0.25 to 7. 

The boundaries are chosen judiciously via trial and error to 

be never binding in simulations. We work directly with the 

discrete state spaces of g t and z it , both in solving and sim- 

ulating the model. For the continuous state spaces of ̂ K it 

and K t , we use the piecewise linear interpolation exten- 

sively to obtain the model’s key moments corresponding 

to the ̂ K it and K t values that lie between the grid points on 

their respective grid. We use a simple (but robust) global 

search routine to maximize the right-hand side of Eq. (A.1) . 

We construct a dense grid for the next period detrended 

capital, ̂ K it+1 (the control variable), by assigning 100 even- 

spaced points between any two adjacent points on the grid 

of ̂ K it (the state variable). We compute the objective func- 

tion on each point in the ̂ K it+1 grid and take the maximum. 

A.2. Approximate aggregation 

We solve the general equilibrium model with an ap- 

proximate aggregation algorithm. Starting with an initial 

guess on the equilibrium laws of motion for the average 

detrended capital, K t+1 , and the detrended consumption, ̂ C t , we solve individual firms’ problem. Based on the re- 

sulting optimal policy functions, we simulate the economy 

for a large number of firms and use the simulated data 

to update the guess for the equilibrium laws of motion. 

We continue the iteration process until the laws of mo- 

tion converge. We then check the accuracy of the laws of 

motion by comparing the implied K t+1 and 

̂ C t values with 

their actual realized values in simulations. If the accuracy 

is high, we stop. Otherwise, we specify different functional 

forms for the laws of motion and repeat the process. 

Specifically, suppose at the j th iteration, the current 

guess for the laws of motion is given by 

log ̂  C ( j) 
t (g t = g i ) = a ( j) 

0 i 
+ a ( j) 

1 i 
log K t + a ( j) 

2 i 

(
log K t 

)2 
, (A.2) 

log K 

( j) 

t+1 (g t = g i ) = b ( j) 
0 i 

+ b ( j) 
1 i 

log K t + b ( j) 
2 i 

(
log K t 

)2 
, (A.3) 

in which i ∈ [1, 7], and “(g t = g i ) ” indicates the values of

log ̂  C 
( j) 
t and log K 

( j) 
t+1 conditional on g t = g i . We adopt the 

quadratic functional form in logs and allow the coefficients 

to depend on the aggregate state, g t , to accommodate the 

strong nonlinearity of the model. 

Under the approximate laws of motion, we solve firms’ 

problem by iterating on the value function in Eq. (A.1) and 

obtain optimal policy functions, ̂ K 

( j) 
it+1 

(̂ K it , Z it , g t , K t 

)
and 

χ( j) 
it+1 

(̂ K it , Z it , g t , K t 

)
. Based on the optimal policy functions, 

we simulate a long series of aggregate productivity growth, 

{ g t } T t=1 
, starting from g 1 = ḡ , with 55,0 0 0 monthly peri-

ods, and a panel of 30,0 0 0 firms over the T periods. The

initial detrended capital, ̂ K it , is set to be one, and the ini- 

tial log firm-specific productivity, z it , set to be the long- 

run mean, z̄ , across all firms. Based on the simulated data, 
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we compute the cross-sectional average detrended capi-

tal, K t , and detrended consumption, ̂ C , as aggregate de-

trended output minus aggregate detrended investment. We

discard the first 50 0 0 periods to ensure that the economy

has reached its stationary distribution. 

On the remaining 50,0 0 0 periods, we pick out the ob-

servations when g t = g i for each value of i ∈ [1, 7] and then

fit the following two regressions on these observations: 

log ̂  C ( j+1) 
t (g t = g i ) 

= a ( j+1) 
0 i 

+ a ( j+1) 
1 i 

log K t + a ( j+1) 
2 i 

(
log K t 

)2 + e C t , (A.4)

log K 

( j+1) 

t+1 (g t = g i ) 

= b ( j+1) 
0 i 

+ b ( j+1) 
1 i 

log K t + b ( j+1) 
2 i 

(
log K t 

)2 + e K t . (A.5)

We next check the convergence for the coefficients, for l =
{ 0 , 1 , 2 } : 
max 
i ∈ [1 , 7] 

| a ( j+1) 
li 

−a ( j) 
li 

| < 10 

−2 , and max 
i ∈ [1 , 7] 

| b ( j+1) 
li 

−b ( j) 
li 

| < 10 

−3 . 

(A.6)

If not, we update the coefficients as follows: 

a ( j+1) 
li 

= a ( j+1) 
li 

ω + a ( j) 
li 

(1 − ω) , (A.7)

b ( j+1) 
li 

= b ( j+1) 
li 

ω + b ( j) 
li 

(1 − ω) , (A.8)

for l = { 0 , 1 , 2 } , in which ω is the dampening parameter.

In practice, we set ω = 0 . 8 . 

The large number of firms, 30,0 0 0, is necessary to en-

sure that the coefficients converge to an acceptable degree.

More important, once the coefficients have converged, we

use the simulated 50,0 0 0 periods to check the time series

R 2 from regressing the actual realized values of the average

detrended capital on those values predicted from its ap-

proximate law of motion as well as the R 2 from regressing

the actual realized values of the aggregate detrended con-

sumption on those values predicted from its approximate

law of motion. In practice, the former R 2 is 0.9999983,

and the latter R 2 is 0.99494656. Both seem reasonable and

are largely comparable with those reported in Krusell and

Smith (1997) , Krusell and Smith (1998) , Favilukis and Lin

(2016) , and Favilukis et al. (2017) . 
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