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Abstract

Many recently proposed, seemingly different factor models are closely related. In
spanning tests, the q-factor model largely subsumes the Fama–French five- and six-
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1. Introduction

A new generation of factor pricing models has emerged in the cross-section of expected

returns, including the Hou–Xue–Zhang (2015) four-factor q model and the Hou et al.

(2018) five-factor q5 model, the Fama–French (2015, 2018) five- and six-factor models, the

Stambaugh–Yuan (2017) four-factor model, the Barillas–Shanken (2018) six-factor model,

and the Daniel–Hirshleifer–Sun (2018) three-factor model. In this paper, we compare the

new factor models on both empirical and conceptual grounds.

We show that the seemingly different factor models are in fact closely related. In factor

spanning tests, the q-factor and q5 models largely subsume the Fama–French five- and six-

factor premiums. From January 1967 to December 2016, the average premiums of the

value, investment, profitability, and momentum factors (HML, CMA, RMW, and UMD)

are 0.37%, 0.33%, 0.26%, and 0.65% per month (t¼2.71, 3.51, 2.5, and 3.61), respect-

ively. However, their q-factor alphas are tiny, 0.07%, –0.00%, 0.01%, and 0.12%

(t ¼ 0:62;�0:02, 0.08, and 0.5), and the q5 alphas 0.05%, –0.04%, –0.01%, and –0.16%

(t ¼ 0:48;�0:96;�0:16, and –0.78), respectively. The cash-based profitability factor,

RMWc, earns on average 0.33% (t¼ 4.16), with a q-factor alpha of 0.25% (t¼ 3.83) and a

q5 alpha of 0.14% (t¼ 2.18). The Gibbons, Ross, and Shanken (1989) test cannot reject the

q-factor or the q5 model based on the null that the alphas of HML, CMA, RMW, and

UMD are jointly zero. Although the test rejects the q-factor model based on the null that

the alphas of HML, CMA, RMWc, and UMD are jointly zero, it fails to reject the q5 model

(p-value¼ 0.13).

Conversely, the Fama–French five- and six-factor models cannot explain the q and q5

factor premiums. The investment, return on equity (Roe), and expected growth factors in

the q-factor and q5 models are on average 0.41%, 0.55%, and 0.82% per month (t¼ 4.92,

5.25, and 9.81); their Fama–French five-factor alphas 0.12%, 0.47%, and 0.78% (t¼ 3.44,

5.94, and 11.34); the six-factor alphas 0.11%, 0.3%, and 0.7% (t¼3.11, 4.51, and 11.1);

and the alphas from the alternative six-factor model with RMWc 0.11%, 0.23%, and

0.61% (t¼2.78, 2.8, and 9.33), respectively. The Gibbons–Ross–Shanken test strongly

rejects the Fama–French five- and six-factor models based on the null that the alphas of the

investment and Roe factors (with or without the expected growth factor) are jointly zero.

Deviating from the traditional approach per Fama and French (1993), Stambaugh and

Yuan (2017) use the NYSE, Amex, and NASDAQ breakpoints of the 20 and 80 percentiles

when forming their factors, as opposed to the more common NYSE breakpoints of the 30

and 70 percentiles. We reproduce their factors via their exact procedure and also replicate

their factors via the traditional approach. The performance of their model is sensitive to the

factor construction. While their original factors survive the q-factor model (but not the q5

model), only the replicated management factor survives the q-factor model. Neither the ori-

ginal nor the replicated Stambaugh–Yuan model can explain the q and q5 factors in the

Gibbons–Ross–Shanken test. However, the q5 model can explain both their original and

replicated models. More important, their replicated factors are close to the q-factors, with

correlations of 0.8 and 0.84. As such, the Stambaugh–Yuan cluster analysis essentially

rediscovers the q-factors, which are in turn motivated from the investment theory.

Daniel, Hirshleifer, and Sun (2018) also deviate from the traditional approach when

constructing their financing and post-earnings-announcement-drift factors. We reproduce

their factors via their exact procedure and also replicate their factors via the common ap-

proach. Their model’s performance is also sensitive to the factor construction. In particular,
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their financing factor premium is more than halved with the common approach and is

explained by the q and q5 models. However, neither their reproduced nor replicated earn-

ings factor can be explained by our models. Their three-factor model explains the Roe pre-

mium but not the investment or expected growth premium. Without a size factor, their

model also fails to explain the size premium. Most important, their replicated factors are

also close to our q-factors, with correlations of 0.69.

Barillas and Shanken (2018) form a six-factor model by combining the market factor,

SMB, the investment and Roe factors from the q-factor model, the Asness–Frazzini (2013)

monthly formed HML factor, and UMD. The Brillas–Shanken model cannot explain the

expected growth premium, with a large alpha of 0.6% per month (t¼8.78). However, nei-

ther the q-factor nor the q5 model can explain the monthly formed HML factor, with

alphas of 0.37% (t¼2.36) and 0.41% (t¼2.99), respectively. Reconstructing the q-factors

with all monthly sorts on size, investment-to-assets, and Roe, we show that the monthly

formed q and q5 models deliver insignificant alphas of 0.18% (t¼ 0.97) and 0.26%

(t¼1.64), respectively, for the monthly formed HML factor.

A comparative advantage of the q-factor and q5 models is their theoretical foundation

from the investment CAPM (Zhang, 2017). In contrast, the Stambaugh–Yuan, Daniel–

Hirshleifer–Sun, and Fama–French six-factor models are largely statistical in nature. Fama

and French (2015) attempt to motivate their five-factor model from the residual income

valuation theory. However, the relations between book-to-market, investment, and profit-

ability with the internal rate of return (IRR) do not necessarily carry over to the one-per-

iod-ahead expected return. Empirically, the estimates of the IRRs for RMW differ

drastically from their one-period-ahead average returns. In addition, reformulating the

valuation equation with the one-period-ahead expected return, we show that the theoretical

relation between the expected investment and the expected return is likely positive. In all,

the investment CAPM is the only first principles based, theoretical framework that gives

rise to the role of accounting variables in forecasting returns.

The rest of the paper is organized as follows. Section 2 describes the construction of all

the factors. Section 3 reports the spanning regressions. Section 4 examines asset pricing

implications from valuation theory. Finally, Section 5 concludes.

2. Factors

Monthly returns are from Center for Research in Security Prices (CRSP, share codes 10 or

11) and accounting variables from Compustat Annual and Quarterly Fundamental Files.

2.1 The Q-Factor and Q5 Models

Following Hou, Xue, and Zhang (2015), we construct the size, investment, and Roe factors

from independent, triple 2� 3� 3 sorts on size, investment-to-assets (I/A), and Roe. Size is

the market equity, which is stock price per share times shares outstanding from CRSP. I/A

is the annual change in total assets (Compustat annual item AT) divided by one-year-lagged

total assets. Roe is income before extraordinary items (Compustat quarterly item IBQ) div-

ided by one-quarter-lagged book equity.1 We exclude financial firms and firms with nega-

tive book equity.

1 Book equity is shareholders’ equity, plus balance sheet deferred taxes and investment tax credit

(Compustat quarterly item TXDITCQ) if available, minus the book value of preferred stock (item
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At the end of June of each year t, we use the NYSE median market equity to split stocks

into two groups, small and big. Independently, at the end of June of year t, we split stocks

into three I=A groups using the NYSE breakpoints for the low 30%, middle 40%, and high

30% of the I=A values for the fiscal year ending in calendar year t–1. Also, independently,

at the beginning of each month, we sort all stocks into three groups based on the NYSE

breakpoints for the low 30%, middle 40%, and high 30% of Roe. Earnings data in

Compustat quarterly files are used in the months immediately after the most recent public

quarterly earnings announcement dates (Compustat quarterly item RDQ). For a firm to

enter the factor construction, the end of the fiscal quarter that corresponds to its announced

earnings must be within six months prior to the portfolio formation month.

Taking the intersection of the two size, three I=A, and three Roe groups, we form eight-

een portfolios. Monthly value-weighted portfolio returns are calculated for the current

month, and the portfolios are rebalanced monthly. The size factor, denoted RMe, is the dif-

ference (small-minus-big), each month, between the simple average of the returns on the

nine small size portfolios and the simple average of the returns on the nine big size port-

folios. The investment factor, RI=A, is the difference (low-minus-high), each month, between

the simple average of the returns on the six low I=A portfolios and the simple average of the

returns on the six high I=A portfolios. Finally, the Roe factor, RRoe, is the difference (high-

minus-low), each month, between the simple average of the returns on the six high Roe

portfolios and the simple average of the returns on the six low Roe portfolios.2

2.1.a. Extending the q-factors backward

Hou, Xue, and Zhang (2015) start their sample in January 1972, restricted by the limited

earnings announcement dates and book equity in Compustat quarterly files. We follow

their exact procedure from January 1972 onward but extend the sample backward to

January 1967. To overcome the lack of coverage for quarterly earnings announcement

dates, we use the most recent quarterly earnings from the fiscal quarter ending at least four

months prior to the portfolio formation month.

To maximize the coverage for quarterly book equity, whenever available we first use

quarterly book equity from Compustat quarterly files. We then supplement the coverage

for fiscal quarter four with book equity from Compustat annual files.3 If both approaches

PSTKQ). Depending on availability, we use stockholders’ equity (item SEQQ), or common equity

(item CEQQ) plus the carrying value of preferred stock (item PSTKQ), or total assets (item ATQ)

minus total liabilities (item LTQ) in that order as shareholders’ equity.

2 Formally, let Rijk, for i¼ 1, 2 and j ; k ¼ 1; 2; 3, denote the eighteen benchmark portfolios from

taking the intersection of the two size, three I/A, and three Roe groups from the independent

triple sorts, in which i is the index for the size groups, j the I/A groups, and k the Roe groups. In

particular, R123 is the returns of the portfolio consisting of all stocks that are simultaneously in the

small size group, the middle I/A group, and the high Roe group. The size factor is constructed

as RMe � ð
X3

j¼1

X3

k¼1
R1jk Þ=9� ð

X3

j¼1

X3

k¼1
R2jk Þ=9, the investment factor, RI=A �

ð
X2

i¼1

X3

k¼1
Ri1kÞ=6� ð

X2

i¼1

X3

k¼1
Ri3kÞ=6, and the Roe factor, RRoe � ð

X2

i¼1

X3

j¼1
Rij3Þ=6�

ð
X2

i¼1

X3

j¼1
Rij1Þ=6. Unlike sequential sorts, the factors from independent sorts do not depend on

the order of the three sorting variables.

3 We measure annual book equity per Davis, Fama, and French (2000) as stockholders’ book equity,

plus balance sheet deferred taxes and investment tax credit (Compustat annual item TXDITC) if

available, minus the book value of preferred stock. Stockholders’ equity is the value reported by
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are unavailable, we apply the clean surplus relation to impute the book equity. If available,

we backward impute beginning-of-quarter book equity as end-of-quarter book equity

minus quarterly earnings plus quarterly dividends.4 Because we impose a four-month lag

between earnings and the holding period (and the book equity in the denominator of Roe is

one-quarter-lagged relative to earnings), all the Compustat data in the backward imput-

ation are at least four-month lagged relative to the portfolio formation month.

If data are unavailable for the backward imputation, we impute the book equity for

quarter t forward based on the book equity from prior quarters. Let BEQt�j; 1� j� 4, de-

note the latest available quarterly book equity as of quarter t, and IBQt�jþ1;t and

DVQt�jþ1;t be the sum of quarterly earnings and the sum of quarterly dividends from quar-

ter t � jþ 1 to t, respectively. BEQt can be imputed as BEQt�j þ IBQt�jþ1;t �DVQt�jþ1;t.

We do not use prior book equity from more than four quarters ago (1� j� 4) to reduce

imputation errors. We start the sample in January 1967 to ensure that all the eighteen

benchmark portfolios from sorting on size, I/A, and Roe have at least ten firms.

2.1.b. The q5 model

Hou et al. (2018) augment the q-factor model with the expected growth factor, denoted

REg, to form the q5 model. The expected growth factor is constructed from independent

2� 3 sorts on size and the expected one-year-ahead investment-to-assets change, Et½d1I/A�.
Tobin’s q, operating cash flow-to-assets, and the change in Roe are used to form Et½d1I/A�.

At the beginning of each month t, Tobin’s q is the market equity (price per share times

the number of shares outstanding from CRSP) plus long-term debt (Compustat annual item

DLTT) and short-term debt (item DLC) scaled by total assets (item AT), all from the fiscal

year ending at least four months ago. For firms with multiple share classes, we merge the

market equity for all classes. Following Ball et al. (2016), we measure operating cash flow-

to-assets, denoted Cop, as total revenue (item REVT) minus cost of goods sold (item

COGS), minus selling, general, and administrative expenses (item XSGA), plus research

and development expenditures (item XRD, zero if missing), minus change in accounts re-

ceivable (item RECT), minus change in inventory (item INVT), minus change in prepaid

expenses (item XPP), plus change in deferred revenue (item DRC plus item DRLT), plus

change in trade accounts payable (item AP), and plus change in accrued expenses (item

XACC), scaled by book assets, all from the fiscal year ending at least four months ago. All

changes are annual changes, and the missing changes are set to zero.

We measure the change in Roe, denoted dRoe, as Roe minus its value from four quarters

ago. We compute dRoe with quarterly earnings from the most recent announcement dates

(Compustat quarterly item RDQ), and if not available, from the fiscal quarter ending at

Compustat (item SEQ), if available. Otherwise, we use the book value of common equity (item CEQ)

plus the par value of preferred stock (item PSTK), or the book value of assets (item AT) minus total

liabilities (item LT). Depending on availability, we use redemption value (item PSTKRV), liquidating

(item PSTKL), or par value (item PSTK) for the book value of preferred stock.

4 Quarterly earnings are income before extraordinary items (Compustat quarterly item IBQ).

Quarterly dividends are zero if dividends per share (item DVPSXQ) are zero. Otherwise, total divi-

dends are dividends per share times beginning-of-quarter shares outstanding adjusted for stock

splits during the quarter. Shares outstanding are from Compustat (quarterly item CSHOQ supple-

mented with annual item CSHO for fiscal quarter four) or CRSP (item SHROUT), and the share ad-

justment factor is from Compustat (quarterly item AJEXQ supplemented with annual item AJEX for

fiscal quarter four) or CRSP (item CFACSHR).
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least four months ago (Hou, Xue, and Zhang, 2018). The end of the fiscal quarter corre-

sponding to its most recent dRoe must be within six months prior to the portfolio forma-

tion. Missing dRoe values are set to zero in cross-sectional regressions in estimating the

expected one-year-ahead investment-to-assets change, Et½d1I/A�.
At the beginning of each month t, we compute Et½d1I=A� by combining the latest known

logðqÞ, Cop, and dRoe values winsorized at the 1–99% level and the average cross-

sectional regression slopes estimated from the prior 120-month rolling window (30 months

minimum). In the prior predictive regressions, the dependent variables, d1I/A, are from the

fiscal year ending at least four months ago as of month t, and the regressors are further

lagged accordingly. In particular, the regressors used in the latest monthly cross-sectional

regression are further lagged by 12 months relative to the latest known logðqÞ, Cop, and

dRoe values used in calculating Et½d1I=A�. We winsorize both the left- and right-hand side

variables in the cross-sectional regressions each month at the 1–99% level. To control for

microcaps, we use weighted least squares with the market equity as weights.

At the beginning of each month t, we use the beginning-of-month median NYSE market

equity to split stocks into two groups, small and big. Independently, we split all stocks into

three groups, low, median, and high, based on the NYSE breakpoints for the low 30%,

middle 40%, and high 30% of the ranked values of Et½d1I=A� calculated at the beginning of

the month. Taking the intersection of the two size and three Et½d1I=A� groups, we form six

benchmark portfolios. Monthly value-weighted portfolio returns are calculated for the cur-

rent month t, and the portfolios are rebalanced at the beginning of month tþ1. The

expected growth factor, REg, is the difference (high-minus-low), each month, between the

simple average of the returns on the two high Et½d1I=A� portfolios and the simple average

of the returns on the two low Et½d1I=A� portfolios.

2.2 The Fama–French (2015, 2018) Five- and Six-Factor Models

Subsequent to Hou, Xue, and Zhang (2015), Fama and French (2015) incorporate two fac-

tors that resemble the q-factors into their three-factor model to form a five-factor model.5

RMW is the difference between the returns on portfolios of stocks with robust and weak

operating profitability, and CMA the difference between the returns on portfolios of low

and high investment stocks. Operating profitability is the total revenue (Compustat annual

item REVT) minus cost of goods sold (item COGS, zero if missing), minus selling, general,

and administrative expenses (item XSGA, zero if missing), and minus interest expense (item

XINT, zero if missing), scaled by book equity. At least one of the three expense items

(COGS, XSGA, and XINT) must be non-missing. Investment is measured as I/A, the annual

change in total assets divided by one-year-lagged total assets.

Fama and French (2015) construct RMW and CMA from independent 2�3 sorts by

interacting size with operating profitability, and separately, with investment-to-assets. At

the end of June of year t, stocks are split into two groups, small and big, based on the

5 Hou, Xue, and Zhang (2015) first appear in October 2012 as NBER working paper 18435, which

supersedes the prior work with various titles, including “Neoclassical factors” (NBER working

paper 13282, July 2007), “An equilibrium three-factor model” (January 2009), “Production-based

factors” (April 2009), “A better three-factor model that explains more anomalies” (June 2009), and

“An alternative three-factor model” (April 2010). By comparison, the Fama and French (2013, 2015)

work is first circulated in June 2013. Their 2013 draft adds only a profitability factor to their three-

factor model, and subsequent drafts, starting from November 2013, also add an investment factor.

6 K. Hou et al.
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NYSE median size, and independently into three groups, low, median, and high, based on

the 30 and 70 NYSE percentiles of operating profitability, and separately, of investment-to-

assets. Taking intersections yields six size-profitability portfolios and six size-I/A portfolios.

Monthly value-weighted portfolio returns are calculated from July of year t to June of tþ1,

and the portfolios are rebalanced at the June-end of year tþ 1. RMW is the average of the

two high profitability portfolio returns minus the average of the two low profitability port-

folio returns. Similarly, CMA is the average of the two low I/A portfolio returns minus the

average of the two high I/A portfolio returns.

Fama and French (2018) further incorporate the momentum factor, UMD, from

Jegadeesh and Titman (1993), into their five-factor model to form a six-factor model. At

the beginning of each month t, stocks are split into two groups, small and big, based on the

NYSE median size, and independently into three groups, low, median, and high, based on

the 30 and 70 NYSE percentiles of prior 11-month returns from month t� 12 to t� 2, skip-

ping month t� 1. Taking intersections yields six size-momentum portfolios. Monthly

value-weighted portfolio returns are calculated for the current month, and the portfolios

are rebalanced at the beginning of month tþ 1. UMD is the average of the two winner port-

folio returns minus the average of the two loser portfolio returns.

Fama and French (2018) also introduce a cash-based profitability factor, denoted

RMWc. At the June end of year t, cash-based operating profitability is revenues

(Compustat annual item REVT) minus cost of goods sold (item COGS, zero if missing),

minus selling, general, and administrative expenses (item XSGA, zero if missing), minus

interest expense (item XINT, zero if missing), minus change in accounts receivable (item

RECT), minus change in inventory (item INVT), minus change in prepaid expenses (item

XPP), plus change in deferred revenue (item DRC plus item DRLT), plus change in trade

accounts payable (item AP), and plus change in accrued expenses (item XACC), scaled by

book equity, all from the fiscal year ending in calendar year t–1. At least one of the three

expense items (COGS, XSGA, and XINT) must be non-missing. The numerator of this vari-

able is a variant of that in Ball et al. (2016), without adding back research and development

expenses. The construction of RMWc is analogous to that of RMW.

To facilitate comparison, we obtain all the Fama–French factors except for RMWc from

Kenneth French’s web site. Because RMWc is not posted online, we follow the exact sample

criterion and factor construction in Fama and French (2018) to reproduce RMWc to use in

our tests. In particular, the Fama–French sample includes financial firms.

2.3 The Stambaugh–Yuan (2017) Four-Factor Model

Stambaugh and Yuan (2017) start with eleven anomalies, which are grouped into two

clusters based on pairwise cross-sectional correlations. The first cluster, labeled MGMT

(management), includes net stock issues, composite issues, accruals, net operating

assets, asset growth (investment-to-assets in Hou, Xue, and Zhang, 2015), and the an-

nual change in gross property, plant, and equipment plus the annual change in invento-

ries scaled by lagged book assets. The second cluster, labeled PERF (performance),

includes failure probability (Campbell, Hilscher, and Szilagyi, 2008), O-score, momen-

tum, gross profitability, and return on assets. We detail the variable definitions in the

Online Appendix. Conceptually, MGMT contains different investment measures, and

PERF different profitability measures. The individual variables in each cluster are real-

igned to yield positive average low-minus-high returns. The composite measures,
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MGMT and PERF, are formed by equal-weighting a stock’s percentile rankings across

the anomaly variables within a given cluster.

Stambaugh and Yuan (2017) form the MGMT and PERF factors from independent

2� 3 sorts on size and MGMT as well as on size and PERF. At the beginning of each month

t, stocks (excluding those with prices per share less than $5) are split by the NYSE median

size into two groups, small and big. Independently, stocks are split based on MGMT, and

separately, on PERF, into three groups, low, median, and high, with breakpoints of the 20

and 80 percentiles of the NYSE, Amex, and NASDAQ universe. Taking intersections yields

six size-MGMT portfolios and six size-PERF portfolios. Monthly value-weighted portfolio

returns are calculated for the current month t, and the portfolios are rebalanced at the be-

ginning of month tþ 1. The MGMT factor is the average of the returns on the two low

MGMT portfolios minus the average of the returns on the two high MGMT portfolios.

The PERF factor is the average of the returns on the two low PERF portfolios minus the

average of the returns on the two high PERF portfolios. The size factor is the returns of the

portfolio of stocks in the intersection of the small-cap middle portfolios from the double

sorts of size with MGMT and with PERF minus the returns of the portfolio of stocks in the

intersection of both big-cap middle portfolios from the two double sorts.

Most important, the Stambaugh–Yuan (2017) factor construction deviates from the

traditional approach in Fama and French (1993, 2015) and Hou, Xue, and Zhang (2015)

in several key aspects. First, when sorting on MGMT and PERF, the breakpoints of the 20

and 80 percentiles are adopted, as opposed to the 30 and 70 percentiles. Second, the NYSE,

Amex, and NASDAQ breakpoints are used, instead of the NYSE breakpoints. Finally, the

size factor contains stocks only in the middle portfolios of the MGMT and PERF sorts, as

opposed to stocks from all three portfolios. To evaluate the sensitivity of their model’s per-

formance to its factor construction, we present two sets of results. In the first, we use their

original factors series from Yu Yuan’s Web site.6 In the second set, we replicate their factors

via the traditional approach.

We emphasize the importance of using the replicated Stambaugh–Yuan factors in the

model comparison. Formed with the 20–80 breakpoints from the NYSE–Amex–NASDAQ

universe, their original factors consist of stocks with more extreme values of the underlying

sorting variables than factors formed with the traditional 30–70 breakpoints from the

NYSE universe. As such, the original Stambaugh–Yuan factors are more susceptible to

microcaps than their replicated factors (Hou, Xue, and Zhang, 2018). While the choice of

breakpoints is ultimately an empirical question, using the replicated factors via the trad-

itional approach ensures that we compare apples with apples.

2.4 The Daniel–Hirshleifer–Sun (2018) Three-Factor Model

The Daniel–Hirshleifer–Sun (2018) model contains the market factor, the financing factor

(FIN), and the post-earnings-announcement-drift factor (PEAD). FIN is based on two

financing measures, the one-year net share issuance from Pontiff and Woodgate (2008) and

the five-year composite share issuance from Daniel and Titman (2006). PEAD is based on

the four-day cumulative abnormal return, denoted Abr, around the most recent quarterly

earnings announcement dates from Chan, Jegadeesh, and Lakonishok (1996). Abr is a

6 We have reproduced the Stambaugh–Yuan factors via their exact procedure and obtained quanti-

tatively similar results.
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stock’s daily return minus the value-weighted market’s daily return cumulated from two

trading days before to one trading day after the earnings announcements.

At the end of June of each year t, net share issuance is the natural log of the ratio of

split-adjusted shares outstanding for fiscal year ending in calendar year t–1 (the common

share outstanding, Compustat annual item CSHO, times the adjustment factor, item AJEX)

to the split-adjusted shares outstanding for fiscal year ending in t–2. The composite share is-

suance is the log growth rate of the market equity not attributable to stock return,

logðMet=Met�5Þ � rðt � 5; tÞ, in which rðt � 5; tÞ is the cumulative log stock return from

the last trading day of June in year t–5 to the last trading day of June in year t, and Met is

the market equity from CRSP on the last trading day of June in year t.

Daniel, Hirshleifer, and Sun (2018) construct FIN from annual independent 2�3 sorts

on size and the financing variables. The size sort is based on the NYSE median. The com-

posite issuance sort is based on the NYSE breakpoints of the 20 and 80 percentiles. The net

share issuance sort is more involved. First, all negative net issuance (repurchasing) firms are

split into two groups based on the NYSE median. Second, all positive net issuance (equity

issuing) firms are split into three groups based on the NYSE breakpoints of the 30 and 70

percentiles. Finally, firms with the most negative issuance are assigned to the low issuance

portfolio, firms with the most positive issuance to the high issuance portfolio, and all the

other firms to the middle issuance portfolio.

To combine the net and the composite issuance groups, Daniel, Hirshleifer, and Sun

(2018) adopt the following ad hoc procedure. If a firm belongs to the high portfolio per

both financing measures, or to the high portfolio per one measure, but missing the data for

the other, the firm is assigned to the high financing portfolio. If a firm belongs to the low

portfolio per both measures, or to the low portfolio per one measure but missing the data

for the other, the firm is assigned to the low financing portfolio. In all other cases, the firm

is assigned to the middle financing portfolio. The FIN factor is then the simple average of

the monthly returns on the two low financing portfolios minus the simple average of the

returns on the two high financing portfolios.

The PEAD factor is from monthly independent 2� 3 sorts on size and Abr. The size sort

is based on the NYSE median, and the Abr sort the NYSE breakpoints of the 20 and 80 per-

centiles. Value-weighted monthly returns are calculated for the current month, and the

portfolios are rebalanced at the beginning of next month. The PEAD factor is the simple

average of the returns on the two high Abr portfolios minus the simple average of the

returns on the two low Abr portfolios.

We raise three concerns with the factor construction in Daniel, Hirshleifer, and Sun

(2018). First, only Abr is picked to form the PEAD factor, even though Chan, Jegadeesh,

and Lakonishok (1996) examine simultaneously three PEAD measures that also include

standard unexpected earnings (Sue) and revisions in analysts’ earnings forecasts (Re). In

particular, Sue seems to be more widely used than Abr in the existing literature. Second, the

NYSE breakpoints of the 20 and 80 percentiles are used, as opposed to the common 30 and

70 percentiles. Finally, the net issuance and composite issuance sorts are non-traditional,

also differing from each other. These concerns suggest that their factors might not be direct-

ly comparable to factors that arise from the traditional approach.

To ensure that we compare apples with apples, in addition to reproducing the Daniel–

Hirshleifer–Sun factors per their exact procedure, we also replicate their factors per the
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traditional approach.7 In particular, we form the PEAD factor by combining Sue, Abr, and

Re.8 At each portfolio formation, we calculate a stock’s percentile rankings on each of the

three PEAD variables and take their simple average as the stock’s ranked PEAD value.

When taking the simple average, we use the available percentile rankings. Doing so allows

us to extend the sample backward to January 1967. This composite score approach follows

Stambaugh and Yuan (2017). We use the same approach to combine the net issuance with

the composite issuance in annual sorts. Doing so avoids the Daniel, Hirshleifer, and Sun

(2018) ad hoc, separate sorts on the two financing measures. Finally, with the composite

FIN and PEAD scores, we split stocks based on their NYSE breakpoints of the 30 and 70

percentiles.

2.5 The Barillas–Shanken (2018) Six-Factor Model

Barillas and Shanken (2018) propose a six-factor model that contains the market factor, the

Fama–French (2015) SMB, the Hou–Xue–Zhang (2015) investment and Roe factors, the

Asness–Frazzini (2013) monthly sorted HML factor, denoted HMLm, and UMD. Asness

and Frazzini form HMLm from monthly sequential sorts on, first, size, and then book-to-

market, in which the book equity is from the fiscal year ending at least 6 months ago, but

the market equity is updated monthly. We obtain the HMLm data from the AQR web site.

We have reproduced HMLm via the AQR procedure. We have also replicated HMLm per

independent sorts and obtained quantitatively similar results. As such, we only report the

results with the AQR HMLm factor for brevity.

3. Spanning Regressions

We rely mostly on spanning tests to compare factor models on empirical grounds. This em-

pirical design is largely comparable with Fama and French (2015, 2018) and Barillas and

Shanken (2017, 2018). For example, Barillas and Shanken (2017, 2018) argue that for

models with traded factors, the extent to which each model is able to price the factors in

7 In our reproduction, we have obtained results that are quantitatively similar to those reported in

Daniel, Hirshleifer, and Sun (2018). Because their factors are not available online, we use our repro-

duced factors in subsequent tests.

8 Sue is calculated as the change in split-adjusted quarterly earnings per share (Compustat quarterly

item EPSPXQ divided by item AJEXQ) from its value four quarters ago divided by the standard devi-

ation of this change in quarterly earnings over the prior eight quarters (six quarters minimum).

Before 1972, we use the most recent Sue with earnings from fiscal quarters ending at least four

months prior to the portfolio formation. Starting from 1972, we use Sue with quarterly earnings from

the most recent quarterly earnings announcement dates (Compustat quarterly item RDQ). For a

firm to enter our portfolio formation, we require the end of the fiscal quarter that corresponds to its

most recent Sue to be within six months prior to the portfolio formation. Because analysts’ earn-

ings forecasts from the Institutional Brokers’ Estimate System (IBES) are not necessarily revised

each month, we construct a six-month moving average of past revisions,X6

s¼1
ðfit�s � fit�s�1Þ=pit�s�1; in which fit�s is the consensus mean forecast (IBES-unadjusted file,

item MEANEST) issued in month t � s for firm i’s current fiscal year earnings (fiscal period

indicator¼ 1), and pit�s�1 is the prior month’s share price (unadjusted file, item PRICE). We require

both earnings forecasts and share prices to be denominated in US dollars (currency code¼USD).

We also adjust for any stock splits and require a minimum of four monthly forecast changes when

constructing Re.
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the other model is all that matters for model comparison. They even argue that test assets

are irrelevant, regardless of whether the factor models are nested or not. For our purposes,

spanning tests provide an informative and concise way to compare factor models.9

We detail the spanning tests of the q-factor and q5 models against the Fama–French

five- and six-factor models in Section 3.1, the Stambaugh–Yuan model in Section 3.2, the

Daniel–Hirshleifer–Sun model in Section 3.3, and the Barillas–Shanken model in Section

3.4. Finally, we examine pairwise correlations among the factors in Section 3.5.

3.1 The Q-Factor and Q
5

Models versus the Fama–French Five- and Six-Factor

Models

The q-factor and q5 models largely explain the Fama–French five- and six-factor premiums,

but their five- and six-factor models cannot explain the q and q5 factor premiums.

3.1.a. The Fama–French five- and six-factor models cannot explain the q and q5 factor

premiums

In Panel A of Table 1, we regress the q and q5 factor returns on the Fama–French five- and

six-factor models, as well as their alternative six-factor model with RMW replaced

by RMWc. From January 1967 to December 2016, the size factor, RMe, in the q-factor

model earns on average 0.31% per month (t¼2.43). All three Fama–French specifications

account for this size premium, with alphas at most 0.05%, due to the presence of SMB.

The investment factor, RI=A, in the q-factor model earns an average return of 0.41% per

month (t¼4.92). Despite the presence of CMA, the Fama–French five-factor model cannot

explain the RI=A premium, with a significant alpha of 0.12% (t¼ 3.44). The two specifica-

tions of the six-factor model yield largely similar results. Our investment factor is stronger

than CMA, because RI=A is based on a joint sort with Roe, whereas the CMA construction

does not control for profitability. In the data, I/A and Roe are positively correlated, but

forecast returns with opposite signs.

The Roe factor, RRoe, earns an average return of 0.55% per month (t¼ 5.25). The

Fama–French five-factor model only reduces the Roe premium slightly to an alpha of

0.47% (t¼5.94), despite a large RMW loading of 0.7 (t¼12.76). Intuitively, the Roe fac-

tor is constructed from monthly sorts on the latest known quarterly earnings, whereas

RMW is from annual sorts on the more stale operating profitability from the last fiscal year

end. As such, the Roe factor is more powerful than RMW. The Fama–French six-factor

model reduces the Roe premium to an alpha of 0.3% (t¼ 4.51), with the help of an UMD

loading of 0.24 (t¼ 9.94). Replacing RMW with RMWc in the six-factor model yields a

smaller alpha of 0.23%, due to a higher premium of RMWc than RMW, 0.33% versus

0.26%. However, the alpha for the Roe factor is still significant (t¼2.8).

The expected growth factor, REg, in the q5 model earns an average return of 0.82% per

month (t¼ 9.81). The Fama–French five-factor model reduces the REg premium only slight-

ly, with an alpha of 0.78% (t¼11.34). Their six-factor model reduces the REg premium

further to an alpha of 0.7% (t¼11.1), with the help of a small UMD loading of 0.12

(t¼6.42). Finally, replacing RMW with RMWc in the six-factor model shrinks the REg

9 In complementary work, Hou et al. (2018) compare asset pricing models with a large set of testing

deciles formed on the 158 significant anomalies compiled by Hou, Xue, and Zhang (2018). Their evi-

dence based on the extensive testing assets is consistent with our spanning tests.
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premium to an alpha of 0.61%, helped by a large RMWc loading of 0.39 (t¼ 6.73) and a

high RMWc premium, but the alpha remains highly significant (t¼ 9.33).

We also perform the Gibbons, Ross, and Shanken (1989, GRS) test on the null hypoth-

esis that the alphas of the key q and q5 factors in the Fama–French five- and six-factor

regressions are jointly zero (Panel C). For the null that the alphas of the investment and Roe

factors are jointly zero, the GRS statistic is 22.72 (p-value¼ 0.00) in the five-factor model,

14.6 (p-value¼ 0.00) in the six-factor model with RMW, and 8.2 (p-value¼0.00) in the al-

ternative six-factor model with RMWc. For the null that the alphas of the investment, Roe,

and expected growth factors are jointly zero, the GRS statistic is 55.14 (p-value¼0.00) in

the five-factor model, 48.85 (p-value¼ 0.00) in the six-factor model, and 36.59 (p-val-

ue¼0.00) in the alternative six-factor model. As such, the Fama–French five- and six-factor

models cannot explain the q and q5 factor premiums.

3.1.b. Explaining the Fama–French five- and six-factor premiums with the q-factor and q5

models

From Panel B, the q-factor and q5 models largely subsume the Fama–French five- and six-

factor premiums in spanning regressions, with economically small and mostly insignificant

alphas. SMB earns on average 0.25% per month (t¼ 1.93), and its q-factor and q5 alphas

are 0.04% (t¼1.42) and 0.07% (t¼ 2.29), respectively. Our size factor, RMe, provides the

explanatory power, yielding regression R2s over 95%. HML has an average return of

0.37% (t¼2.71), and its q-factor and q5 alphas are 0.07% (t¼ 0.62) and 0.05% (t¼ 0.48),

respectively. The investment factor, RI=A, delivers the explanatory power. The factor load-

ings are economically large (about one) and also highly significant (t-values above 11).

The momentum factor, UMD, earns on average 0.65% per month (t¼ 3.61). The q-fac-

tor alpha is only 0.12% (t¼0.5), helped by a large Roe factor loading of 0.91 (t¼5.9). The

q5 alpha is weakly negative,�0.16% (t ¼ �0:78). In addition to a large Roe factor loading

of 0.78 (t¼4.4), the expected growth factor loading of 0.44 (t¼ 2.62) also helps.

Intuitively, momentum winners are both more profitable and are expected to grow faster

than momentum losers, both going in the right direction in explaining average returns.

CMA has an average return of 0.33% per month (t¼ 3.51). The q-factor alpha is virtu-

ally zero (t ¼ �0:02), helped by a large investment factor loading of 0.96 (t¼33.56). The

q5 alpha is also tiny, –0.04% (t ¼ �0:96), with a similar investment factor loading. RMW

has an average return of 0.26% (t¼ 2.5). The q-factor alpha is only 0.01% (t¼0.08), with

a large Roe factor loading of 0.54 (t¼8.5). Similarly, the q5 alpha is also tiny,� 0.01%

(t ¼ �0:16), with a large Roe factor loading of 0.53 (t¼7.85). Finally, RMWc has an aver-

age return of 0.33% (t¼ 4.16). RMWc survives the control of the q-factors, with an alpha

of 0.25% (t¼ 3.83). Although the Roe factor loading is significant (t¼ 9.88), its magnitude

is only 0.29. The q5 model reduces the alpha of RMWc further to 0.14%, albeit still signifi-

cant (t¼2.18), helped by both the Roe and expected growth factors.

Panel C reports the GRS tests on the null hypothesis that the alphas of the key Fama–

French five- and six-factors are jointly zero in the q-factor and q5 models. For the null that

the alphas of HML, CMA, and RMW are jointly zero, the GRS statistic is 0.2 (p-val-

ue¼0.9) in the q-factor model and 0.62 (p-value¼0.6) in the q5 model. For the null

that the alphas of HML, CMA, RMW, and UMD are jointly zero, the GRS statistic is 0.36

(p-value¼ 0.84) in the q-factor model and 0.65 (p-value¼0.62) in the q5 model. Finally,

for the null that the alphas of HML, CMA, RMWc, and UMD are jointly zero, the GRS

statistic is 6.14 (p-value¼0.00) in the q-factor model and 1.81 (p-value¼ 0.13) in the q5
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model. As such, the q-factor model largely subsumes the Fama–French five- and six-factor

models. Although the alternative six-factor model with RMWc survives the q-factor model,

it is largely subsumed by the q5 model.

When constructing the q-factors, we adopt annual sorts on size and investment-to-assets

(I/A) at the end of each June but monthly sorts on Roe with the latest known quarterly earn-

ings at the beginning of each month. Using up-to-date quarterly earnings in monthly sorts is

critical for the Roe factor’s stronger explanatory power than RMW, which is based on

more stale operating profitability from the fiscal year ending at least six months ago in

annual sorts. We emphasize that monthly sorts aimed to exploit up-to-date information are

commonly adopted in the existing literature on, for example, price and earnings momen-

tum. In particular, we should acknowledge that if we instead use annual sorts on annual

Roe from the last fiscal year end (Compustat annual item IB scaled by one-year-lagged

book equity) in the independent, triple 2� 3� 3 sorts on size, investment-to-assets, and

Roe, the average Roe premium is only 0.16% per month (t¼1.66). The size and investment

premiums are also weaker, 0.23% (t¼1.82) and 0.32% (t¼3.64), respectively.

3.2 The Q-Factor and Q5 Models versus the Stambaugh–Yuan Model

Table II reports the factor spanning tests of the q-factor and q5 models versus the

Stambaugh–Yuan model. As noted, their factor construction deviates from the traditional

approach in important ways. As such, we report two sets of results, with one set using their

original factors and the other using our replicated factors reconstructed via the traditional

approach. The bottomline is that their model’s performance is sensitive to the factor con-

struction. While their original factors survive the q-factor and q5 models, the replicated fac-

tors are largely absorbed by the q5 model. In addition, neither their original nor replicated

model can explain the q and q5 factors.

In Panel A, we use the Stambaugh–Yuan model to explain the q and q5 factor premiums.

Their original model explains the size and investment factors, but not the Roe factor. The

alphas of the size and investment factors are –0.04% and 0.08% per month (t ¼ �0:65 and

1.26), respectively. However, the alpha of the Roe factor is 0.33% (t¼ 3.55), despite a large

PERF factor loading of 0.42 (t¼ 11.65). The expected growth factor also survives the

Stambaugh–Yuan model, with an alpha of 0.55% (t¼9.04).

The replicated Stambaugh–Yuan factors yield largely similar results. The alphas of the

size and investment factors are 0.01% (t¼ 0.18) and 0.07% (t¼1.41), but the alphas of

the Roe and expected growth factors are 0.32% (t¼ 4.71) and 0.58% (t¼ 10.25), respect-

ively. For the null hypothesis that the investment and Roe factor alphas are jointly zero,

the GRS statistic is 8.16 (p-value¼ 0.00) in the original Stambaugh–Yuan model and 12.12

(p-value¼ 0.00) in the replicated model. For the null that the alphas of the investment,

Roe, and expected growth factors are jointly zero, the GRS statistic is 30.24 (p-val-

ue¼0.00) in the original model and 41.27 (p-value¼ 0.00) in the replicated model.

In Panel B, we use the q-factor and q5 models to explain the Stambaugh–Yuan factors.

Their size factor earns on average 0.44% per month (t¼3.6), and the replicated version

0.31% (t¼ 2.13). The q-factor and q5 alphas of the original size factor are significant,

about 0.15%. For the replicated size factor, the q-factor alpha is 0.06% (t¼ 1.13), and the

q5 alpha 0.09% (t¼ 1.72). The original MGMT factor earns on average 0.61% (t¼ 4.72),

with a q-factor alpha of 0.36% (t¼ 4.73) and a q5 alpha of 0.12% (t¼ 1.64). The repli-

cated MGMT factor earns on average 0.47% (t¼4.68). The q-factor model yields a small
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alpha of 0.2%, albeit significant (t¼3.59), despite a large investment factor loading of

0.92 (t¼ 22.65). The q5 model shrinks the alpha further to �0.02% (t ¼ �0:38), helped by

an expected growth factor loading of 0.36 (t¼9.79).

The original PERF factor earns on average 0.68% per month (t¼ 4.2). The q-factor

model yields an alpha of 0.34% (t¼ 2), with the help of a large Roe factor loading of 0.95

(t¼10.42). The q5 model yields a tiny alpha of 0.01% (t¼0.05), helped by both the Roe

and expected growth factor loadings, 0.79 (t¼ 8.4) and 0.53 (t¼4.8), respectively. The

replicated PERF factor earns on average 0.49% (t¼ 3.67). The q-factor and q5 alphas are

both insignificant, 0.03% (t¼ 0.28) and –0.19% (t ¼ �1:87), respectively. The Roe and

expected growth factors again pull their weight.

For the GRS tests, the null hypothesis that the alphas of the original MGMT and PERF

factors are jointly zero has a test statistic of 17.16 (p-value¼0.00) in the q-factor model

and 1.46 (p-value¼0.23) in the q5 model. The null that the alphas of the replicated

MGMT and PERF factors are jointly zero has a test statistic of 7.96 (p-value¼ 0.00) in the

q-factor model and 2.38 (p-value¼ 0.09) in the q5 model. As such, the q5 model subsumes

both the original and replicated Stambaugh–Yuan factors.

Stambaugh and Yuan (2017) include financial firms and firms with negative book

equity, but impose a $5 price screen in their sample selection. For comparison, we exclude

financial firms and firms with negative book equity, without imposing the price screen.

Without going through the details, we can report that the sample differences have little im-

pact on our spanning regressions. Panel A of Table A1 in the Online Appendix, which is

based on their sample criterion, shows largely similar results as Table II.

3.3 The Q-Factor and Q5 Models versus the Daniel–Hirshleifer–Sun Model

Table III reports the spanning tests of the q-factor and q5 models versus the Daniel–

Hirshleifer–Sun model. As noted, their factor construction also deviates from the tradition-

al approach in important ways. As such, we report two sets of results, with one set using

the reproduced factors via their exact procedure and the other set using the replicated fac-

tors via the traditional procedure.

The bottomline is that the Daniel–Hirshleifer–Sun model’s performance is sensitive to

the factor construction. Their FIN factor premium is more than halved with the traditional

construction and is explained by both the q and q5 models. However, their PEAD factor

(reproduced or replicated) cannot be explained by the q and q5 models. Their three-factor

model explains the Roe premium but not the investment or expected growth premium.

Finally, without a size factor, their model fails to explain the size premium.

In Panel A, we use the Daniel–Hirshleifer–Sun model to explain the q and q5 factors.

Without a size factor, their model cannot explain the size premium, with an alpha of

0.46% per month (t¼3.11) with the reproduced factors and 0.63% (t¼4.25) with the

replicated factors. Their model also fails to explain the investment factor, with an alpha of

0.18% (t¼ 2.56) with the reproduced factors and 0.32% (t¼4.34) with the replicated fac-

tors, as well as the expected growth factor, with an alphas of 0.56% (t¼7.42) and 0.54%

(t¼7.45), respectively. The Daniel–Hirshleifer–Sun model does subsume the Roe premium,

with an alpha of 0.1% (t¼0.83) from the reproduced model and –0.14% (t ¼ �1:91) from

the replicated model. However, the GRS tests all reject the null that their model can explain

the key q and q5 factor premiums jointly.
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In Panel B, we use the q and q5 models to explain the FIN and PEAD factors in the

Daniel–Hirshleifer–Sun model. The reproduced FIN factor earns an average return of

0.83% per month (t¼4.55), a q-factor alpha of 0.33% (t¼2.67), but an insignificant q5

alpha of 0.14% (t¼1.12). In contrast, the replicated FIN factor premium is only 0.32%

(t¼2.53), and its q-factor and q5 alphas are both close to zero. The investment factor is the

main source behind the models’ explanatory power for FIN. The reproduced PEAD factor

earns an average return of 0.62% (t¼ 7.73). Both the q and q5 models fail to explain this

premium, with alphas of 0.56% (t¼5.66) and 0.47% (t¼ 5.32), respectively. The repli-

cated PEAD factor earns an even higher average return of 0.72% (t¼7.78), although its q

and q5 alphas are smaller, 0.43% (t¼5.13) and 0.31% (t¼ 4.07), respectively. Finally, the

GRS tests indicate that the q and q5 models cannot explain FIN and PEAD jointly.

Daniel, Hirshleifer, and Sun (2018) exclude financial firms but include firms with nega-

tive book equity in their sample selection. For comparison, we exclude financial firms and

firms with negative book equity. Without going through the details, we can report that the

sample differences have little impact. Panel B of Table A1 in the Online Appendix, which is

based on their sample criterion, yields largely similar results as Table III.

3.4 The Q-Factor and Q5 Models versus the Barillas–Shanken Model

Table IV reports the spanning tests of the q-factor and q5 models versus the Barillas–

Shanken model. Because their model includes the investment and Roe factors in the q-factor

model, we only study whether their model can explain the expected growth factor in the q5

model. From Panel A, the answer is no. The Barillas–Shanken alpha of the expected growth

factor is 0.6% per month (t¼8.78).

Panel B shows that the monthly formed HML factor, HMLm, earns an average premium

of 0.34% per month (t¼ 2.13). Neither the q-factor nor the q5 model can explain the

HMLm premium, leaving alphas of 0.37% (t¼ 2.36) and 0.41% (t¼ 2.99), respectively.

The investment factor loadings are economically large, 0.93 and 0.95, going in the right dir-

ection in explaining the HMLm premium. However, their impact is mostly offset by the

large but negative Roe factor loadings, –0.69 and –0.67, respectively, going in the wrong

direction in explaining the HMLm premium.10

3.5 Correlation Matrix

To shed further light on the relations between the myriad of factors, Table V reports their

correlation matrix. The size factor in the q-factor model and SMB in the Fama–French

models are largely equivalent, with a correlation of 0.97. The investment factor, RI=A, in

the q-factor model has high correlations of 0.67 with HML, 0.91 with CMA, 0.84 with the

replicated MGMT factor, 0.69 with the replicated FIN factor, and 0.49 with the monthly

formed HML. As such, HML contains similar pricing information as the investment factor,

and MGMT and FIN are also closely related factors.

10 In untabulated results, we reconstruct the q-factors via monthly sorts on all three characteristics,

including size and investment-to-assets. The monthly formed size, I/A, and Roe factor premiums

are on average 0.33%, 0.5%, and 0.57% per month (t ¼ 2:49; 5:73, and 5.23), and their correlations

with the original q-factors are 0.96, 0.92, and 0.98, respectively. The monthly formed q and q5 mod-

els do a better job in explaining the HMLm premium, with alphas of 0.18% (t¼ 0.97) and 0.26%

(t¼ 1.64), respectively.
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The Roe factor, RRoe, has high correlations of 0.67 with RMW and 0.57 with RMWc.

Intuitively, RRoe, RMW, and RMWc are all based on different measures of profitability.

The Roe factor also has a high correlation of 0.5 with UMD, suggesting that momentum

contains some pricing information of Roe. More important, the Roe factor has high corre-

lations of 0.8 with the replicated PERF factor and 0.69 with the replicated PEAD factor. As

such, PERF and PEAD are closely related to the Roe factor.

The expected growth factor, REg, has a high correlation of 0.59 with RMWc.

Intuitively, firms with more cash available for investments tend to have high expected in-

vestment growth than firms with less cash available for investments. Cash- and accruals-

based profitability measures are related, giving rise to correlations of REg with the Roe fac-

tor, 0.52; with RMW, 0.43; with the replicated PERF factor, 0.51; and with the replicated

PEAD factor, 0.4. Cash flows are also related to investment, giving rise to correlations of

REg with RI=A, 0.38; with CMA, 0.33; with the replicated MGMT factor, 0.54; and with

the replicated FIN factor, 0.54. In all, the seemingly different factors are closely related.

4. Asset Pricing Implications from Valuation Theory

In this section, we turn to the economic foundation of factor models. The q and q5 models

stand out in that the investment, Roe, and expected growth factors are motivated from the

first principle of real investment (Hou, Xue, and Zhang, 2015; Hou et al., 2018). For com-

parison, the Stambaugh–Yuan (2017) model and the Fama–French (2018) six-factor model

Table IV. Spanning tests, the q-factor and q5 models versus the Barillas–Shanken (2018)

six-factor model (January 1967–December 2016)

R is the average return, a the intercept, and R2 its goodness-of-fit in percent. RMkt;RMe;RI=A, and

RRoe are the market, size, investment, and Roe factors in the q-factor and q5 models, respective-

ly, and REg the expected growth factor in the q5 model. MKT, SMB, UMD, and HMLm are the

market, size, momentum, and the Asness–Frazzini monthly formed HML factor in the Barillas–

Shanken model. The HMLm data are from AQR’s web site. The t-values (in the rows beneath the

corresponding estimates) are adjusted for heteroscedasticity and autocorrelations.

Panel A: Regressing the q5 factors on the Barillas–Shanken factors

R a MKT SMB RI=A RRoe UMD HMLm R2

RMe 0.31 –0.04 0.02 1.00 0.03 0.09 0.02 0.05 95

2.43 –1.08 1.79 60.21 1.11 2.98 1.85 2.01

REg 0.82 0.60 –0.10 –0.11 0.18 0.25 0.09 0.06 50

9.81 8.78 –5.80 –4.77 4.50 5.90 3.54 2.00

Panel B: Regressing the Asness–Frazzini HML factor on the q-factor and q5 models

R a RMkt RMe RI=A RRoe REg R2

HMLm 0.34 0.37 –0.01 –0.10 0.93 –0.69 48

2.13 2.36 –0.12 –0.95 8.18 –6.78

0.41 –0.01 –0.10 0.95 –0.67 –0.08 48

2.99 –0.30 –0.98 7.72 –5.61 –0.72
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are largely statistical in nature.11 Although Daniel, Hirshleifer, and Sun (2018) attempt to

motivate their FIN factor from long-term overreaction and the PEAD factor from short-

term underreaction, the conceptual linkage between specific psychological biases and

anomalies in question seems tenuous.12

Fama and French (2015) attempt to provide an economic foundation for their five-fac-

tor model based on the residual income valuation model (Preinreich, 1938; Miller and

Modigliani, 1961; Ohlson, 1995). In the dividend discounting model, a firm’s market

equity is the present value of its dividends:

Pit ¼
X1

s¼1

E½Ditþs�
ð1þ riÞs

(1)

in which Pit is the market equity, Dit dividends, and ri the long-term average expected re-

turn, or the internal rate of return (IRR) (Williams, 1938). The clean surplus relation says

that dividends equal earnings minus the change in book equity, Ditþs¼Yitþs ��Beitþs, in

which Yitþs is earnings, and �Beitþs � Beitþs � Beitþs�1 the change in book equity. The divi-

dend discounting model becomes:

Pit

Beit
¼

X1
s¼1

E½Yitþs ��Beitþs�=ð1þ riÞs

Beit
: (2)

Fama and French (2015) make three predictions based on Equation (2). First, fixing

everything except the current market value, Pit, and the expected stock return, ri, a low Pit,

or a high book-to-market equity, Beit=Pit, implies a high expected return. Second, fixing

everything except the expected profitability and the expected stock return, high expected

profitability implies a high expected return. Finally, fixing everything except the expected

book equity growth (expected investment) and the expected return, high expected book

equity growth implies a low expected return.

Equation (2) connects book-to-market, investment, and profitability to the IRR.

However, Fama and French (2015) argue that the difference between the one-period-ahead

expected return and the IRR is unimportant.13 Empirically, Fama and French use current

11 In particular, Fama and French (2018) acknowledge: “We include momentum factors (somewhat

reluctantly) now to satisfy insistent popular demand. We worry, however, that opening the game

to factors that seem empirically robust but lack theoretical motivation has a destructive downside:

the end of discipline that produces parsimonious models and the beginning of a dark age of data

dredging that produces a long list of factors with little hope of sifting through them in a statistical-

ly reliable way (p. 237).”

12 For example, in a recent survey from the behavioral perspective, Lee and So (2015) acknowledge:

“Be forewarned: none of these [behavioral] studies will provide a clean one-to-one mapping be-

tween the investor psychology literature and specific market anomalies. Rather, their goal is to

simply set out the experimental evidence from psychology, sociology, and anthropology. The hope

is that, thus armed, financial economists would be more attuned to, and more readily recognize,

certain market phenomena as manifestations of these enduring human foibles (p. 69).”

13 In particular, Fama and French (2015) argue: “Most asset pricing research focuses on short-

horizon returns—we use a one-month horizon in our tests. If each stock’s short-horizon expected

return is positively related to its IRR—if, for example, the expected return is the same for all

horizons—the valuation equation implies that the cross-section of expected returns is determined

by the combination of current prices and expectations of future dividends. The decomposition of
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profitability as a proxy for the expected profitability to form RMW and current asset

growth as a proxy for the expected investment to form CMA.

We raise four concerns on the Fama–French (2015) reasoning. First, the IRR can differ

drastically from, and can even correlate negatively with, the one-period-ahead expected re-

turn (Section 4.1). Second, HML is a separate factor from CMA in the Fama–French setup

but is redundant in explaining average returns in the data (Section 4.2). Third, CMA can only

arise from the market-to-book term, Pit=Beit, in Equation (2). In contrast, the expected book

equity growth is positively correlated with the one-period-ahead expected return (Section

4.3). Finally, past investment is a poor proxy for the expected investment (Section 4.4).

4.1 The IRR Is Not Equal to the One-Period-Ahead Expected Return

The Fama–French (2015) assumption that the expected return is the same for all horizons

contradicts the notion of time-varying expected returns. The IRR can differ greatly from

the one-period-ahead expected return. The difference is most striking in the context of

price and earnings momentum. Chan, Jegadeesh, and Lakonishok (1996) show that

momentum profits are short-lived, large, and positive for up to 12 months, but negative

afterward. In contrast, Tang, Wu, and Zhang (2014) estimate price and earnings momen-

tum to be significantly negative, once measured as the IRR per Gebhardt, Lee, and

Swaminathan (2001).

To quantify how the IRRs deviate from one-period-ahead average returns, we estimate

the IRRs for the Fama–French (2015) SMB, HML, RMW, and CMA per Claus and

Thomas (2001); Gebhardt, Lee, and Swaminathan (2001); Easton (2004); and Ohlson and

Juettner-Nauroth (2005). Although differing in implementation details, these methods all

share the basic idea of backing out the IRRs from different versions of the valuation

Equation (2). The baseline versions of these accounting methods use analysts’ forecasts as

expected cash flows. Because analysts’ forecasts are limited to a relatively small sample of

large, mature firms, and are likely even biased, we also implement two alternative proce-

dures. Hou, van Dijk, and Zhang (2012) use pooled cross-sectional regressions to forecast

future earnings, and Tang, Wu, and Zhang (2014) use annual cross-sectional regressions to

forecast future profitability. We detail the estimation procedures in the Online Appendix.

Empirically, we take one period to be one year, and compare the average factor IRRs at

the June end of each year t with the annual average factor returns from the July of year t to

the June of year tþ1. Panel A of Table VI reports that the IRRs estimated with analysts’

earnings forecasts for RMW differ significantly from their one-period-ahead average

returns. The differences for RMW are significant in twelve out of the twelve experiments

from intersecting the three expected Roe estimation procedures with the four accounting

models. The IRRs of RMW are even significantly negative in eight experiments, in contrast

to the average returns that are significantly positive in all twelve.

Averaging across the four IRR models implemented with analysts’ earnings forecasts,

the IRR of RMW is –1.58% per annum (t ¼ �9:66), whereas its one-period-ahead average

return is 4.52% (t¼2.88). The contrast from implementing the accounting models with

cross-sectional earnings forecasts is largely similar, –1.84% (t ¼ �9:41) versus 3.61%

(t¼2.66). With cross-sectional Roe forecasts, the comparison is between –2.47%

(t ¼ �21:47) versus 3.14% (t¼ 2.54).

cash flows then implies that each stock’s relevant expected return is determined by its price-to-

book ratio and expectations of its future profitability and investment (p. 2).”
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Table VI also reports important IRR-average-return differences for CMA, although not

as drastic as the differences for RMW. The differences for CMA are significant for six out

of twelve experiments. Finally, without going through the details, we can report that, con-

sistent with Tang, Wu, and Zhang (2014), the IRR-average-return differences for SMB and

HML are mostly insignificant.

4.2 The Relation between Investment and Book-to-Market

Fama and French (2015) argue that market-to-book, expected profitability, and expected

investment give rise to three separate factors in Equation (2). However, empirically, once

RMW and CMA are added to their three-factor model, Fama and French report that HML

becomes redundant in describing average returns in the data. This evidence contradicts their

conceptual argument.

However, the evidence accords well with the investment CAPM underlying the q-factor

model. Intuitively, the marginal cost of investment (which increases with investment-to-

assets) equals marginal q (the value of an extra unit of capital). With constant returns to

scale, marginal q equals average q (Hayashi, 1982), which is in turn highly correlated with

market-to-book equity. This tight economic linkage between investment and value implies

that HML should be highly correlated with the investment factor. From January 1967 to

December 2016, the correlation between HML and CMA is 0.69, and the correlation be-

tween HML and the investment factor in the q-factor model is 0.67 (Table V). The econom-

ic linkage between investment and value also means that CMA can be motivated from the

market-to-book term in the valuation Equation (2), barring the difference between the IRR

and the one-period-ahead expected return (Section 4.1).

4.3 The Relations among Past Investment, the Expected Investment, and the

Expected Return

Fama and French (2015) argue that Equation (2) predicts a negative relation between the

expected investment and the IRR. However, this negative relation does not apply to the

one-period-ahead expected return, Et½ritþ1�. From the definition of return,

Pit ¼ ðEt½Ditþ1� þ Et½Pitþ1�Þ=ð1þ Et½ritþ1�Þ, and the clean surplus relation, we can reformu-

late the valuation Equation (2) in terms of the one-period-ahead expected return:

Pit ¼
Et½Yitþ1 ��Beitþ1� þ Et½Pitþ1�

1þ Et½ritþ1�
: (3)

Dividing both sides of Equation (3) by Beit and rearranging, we obtain:

Pit

Beit
¼

Et
Yitþ1

Beit

h i
� Et

�Beitþ1

Beit

h i
þ Et

Pitþ1

Beitþ1
1þ �Beitþ1

Beit

� �h i

1þ Et½ritþ1�
; (4)

Pit

Beit
¼

Et
Yitþ1

Beit

h i
þ Et

�Beitþ1

Beit

Pitþ1

Beitþ1
� 1

� �h i
þ Et

Pitþ1

Beitþ1

h i

1þ Et½ritþ1�
: (5)

Fixing everything except Et½�Beitþ1=Beit� and Et½ritþ1�, high Et½�Beitþ1=Beit� implies

high Et½ritþ1�, because Pitþ1=Beitþ1 � 1 is likely positive in the data. This prediction is con-

sistent with the weakly positive Et½�Beitþ1=Beit� - Et½ritþ1� relation documented in Fama

and French (2006).
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The relation between the expected investment and the expected return is also positive in

the investment CAPM, providing the motivation for the expected growth factor (Hou et al.,

2018). As such, the prediction from the valuation Equation (2), once reformulated in terms

of the one-period-ahead expected return, is consistent with the investment theory.

4.4 Past Investment Is a Poor Proxy for the Expected Investment

After motivating CMA from the expected investment effect, Fama and French (2015) use

past investment as a proxy for the expected investment. This procedure is problematic.

Whereas past profitability is a good proxy for the expected profitability, past investment is

a poor proxy for the expected investment. A large economics literature on lumpy invest-

ment emphasizes the lack of persistence of micro-level investment data (Dixit and Pindyck,

1994; Doms and Dunne, 1998; Whited, 1998).

To show the poor quality of past investment as a proxy for the expected investment, we

adopt the Fama–French (2006) setup and perform annual cross-sectional regressions of fu-

ture book equity growth rates, �Beitþs=Beitþs�1 � ðBeitþs � Beitþs�1Þ=Beitþs�1, for

s ¼ 1;2; . . . ;10, on the current asset growth, �Ait=Ait�1 ¼ ðAit � Ait�1Þ=Ait�1, and, separ-

ately, on book equity growth, �Beit=Beit�1. For comparison, we also report annual cross-

sectional regressions of future operating profitability, Opitþs, on current Opit.

Following Fama and French (2006), we include all stocks from 1963 to 2016, including

financial firms. We measure book equity per Davis, Fama, and French (2000) (footnote 3)

and operating profitability per Fama and French (2015). Variables dated t are from the fis-

cal year ending in calendar year t. Firms with total assets below $5 million or book equity

below $2.5 million in year t are excluded in Panel A of Table VII. The cutoffs are $25 and

$12.5 million, respectively, in Panel B. The right- and left-hand side variables in the regres-

sions are winsorized each year at the 1–99% level.

Asset growth does not predict future book equity growth. In Panel A in Table VII, the

slope starts at 0.22 at the one-year horizon and falls to 0.06 in year three and to 0.04 in

year five. The average R2 of the cross-sectional regressions starts at 5% in year one, drops

to zero in year four, and stays at zero for the remaining years. Book equity growth does not

predict future book equity growth either. The slope starts at 0.2 at the one-year horizon

and drops to 0.06 in year three and to 0.02 in year five. The average R2 of the cross-

sectional regressions starts at 6% in year one, drops to zero in year four, and stays at zero

for the remaining years. The results with the more stringent sample criterion in Panel B are

largely similar. The evidence casts doubt on the motivation of CMA from the expected in-

vestment effect, but it lends support to our reinterpretation of CMA as the substitute for

the value effect via the market-to-book term in the valuation Equation (2).

The last five columns in Table VII show that operating profitability forecasts future

operating profitability. In Panel A, the slope in the annual cross-sectional regressions starts

with 0.8 in year one, drops to 0.59 in year three and 0.49 in year five, and remains at 0.38

even in year ten. The average R2 starts at 54% in year one, drops to 27% in year three and

19% in year five, and remains above 10% in year ten. The evidence with the more stringent

sample criterion in Panel B is largely similar. As such, using past profitability as a proxy for

the expected profitability is reasonable. However, using past investment as a proxy for the

expected investment as in Fama and French (2015) is problematic.
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5. Conclusion

Many recently proposed, seemingly different factor models are closely related. Empirically,

the q-factor model largely subsumes the Fama–French (2015, 2018) five- and six-factor

models in spanning regressions. The Stambaugh–Yuan (2017) factors are sensitive to their

construction, and once replicated via the traditional approach, are close to the q-factors,

with correlations of 0.8 and 0.84. Neither the original nor the replicated Stambaugh–Yuan

model can explain the q and q5 factors in the Gibbons–Ross–Shanken (1989) test, but the

q5 model can explain both their original and replicated factors. The Daniel–Hirshleifer–Sun

(2018) factors are also sensitive to their construction, and once replicated via the traditional

approach, are close to the q-factors, with correlations of 0.69. Their three-factor model

cannot explain the size, investment, and expected growth factors, and the q and q5 models

cannot explain their earnings factor. Finally, the Barillas–Shanken (2018) model, which

embeds the investment and Roe factors from the q-factor model, cannot explain the

expected growth factor in the q5 model. Although the q-factor model cannot explain the

Asness–Frazzini (2013) monthly formed HML factor in the Barillas–Shanken specification,

the monthly formed q-factor model can.

Conceptually, a unique advantage of the q-factor and q5 models over the competing

models is their economic foundation based on the first principle of real investment. In con-

trast, the Stambaugh–Yuan (2017), Daniel–Hirshleifer–Sun (2018), and Fama–French

(2018) six-factor models are mostly ad hoc and statistical in nature. We also show that the

Fama–French (2015) five-factor model cannot be motivated from valuation theory as ori-

ginally advertised. In particular, once reformulated with the one-period-ahead expected re-

turn, valuation theory also implies a positive relation between the expected investment and

the expected return, consistent with the investment CAPM.

Supplementary Material

Supplementary data are available at Review of Finance online.
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