Lecture Notes

Liu and Zhang (2014, Journal of Monetary Economics): A Neoclassical Interpretation of Momentum

Lu Zhang¹

¹The Ohio State University and NBER

BUSFIN 8250: Advanced Asset Pricing Autumn 2014, Ohio State

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theme

◆□ > < 個 > < E > < E > E 9 < 0</p>

An economic interpretation of momentum based on the neoclassical q-theory of investment

Key Result

・ロト ・聞ト ・ヨト ・ヨト

Price and earnings momentum

200

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1 The Model

- 2 Average Momentum Profits
- 3 Momentum Reversal
- 4 Market States and Momentum
- 5 The Interaction of Momentum with Firm Characteristics
- 6 Risk Analysis

1 The Model

- 2 Average Momentum Profits
- 3 Momentum Reversal
- 4 Market States and Momentum
- 5 The Interaction of Momentum with Firm Characteristics
- 6 Risk Analysis

The Model

A microfoundation for the WACC approach to capital budgeting

Marginal benefits of investment at time t+1 $(1-\tau_{t+1})\left|\kappa\frac{Y_{it+1}}{K_{it+1}}+\frac{a}{2}\left(\frac{I_{it+1}}{K_{it+1}}\right)^2\right|$ Marginal product plus economy of scale (net of taxes) Expected continuation value $1 + (1 - au_t) a\left(rac{I_{it}}{K_{it}}
ight)$ Marginal costs of investment at time t $w_{it}r_{it+1}^{Ba} + (1 - w_{it})r_{it+1}^{S} = r_{it+1}^{I}$

The weighted average cost of capital

The Model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Expected stock returns = expected levered investment returns?

$$E\left[r_{it+1}^{S} - \underbrace{\frac{r_{it+1}^{I}(a,\kappa) - w_{it}r_{it+1}^{Ba}}{1 - w_{it}}}_{r_{it+1}^{Iw}}\right] = 0,$$

with the model error, α_i^q , as the sample average of the difference

Construct a χ^2 test per Hansen (1982) based on these alphas

The Model Measurement, 1963–2012

- *K_{it}*: Net property, plant, and equipment (PPE)
- *I_{it}*: Capital expenditure minus sales of PPE
- Y_{it}: Sales
- *B_{it}*: Long-term debt plus short-term debt
- P_{it}: The market value of common equity
- δ_{it} : The amount of depreciation divided by capital
- r_{it+1}^B : Imputed bond ratings, assigning corporate bond returns of a given rating to all firms with the same rating
- τ_t : Statutory tax rate of corporate income

The Model

Timing alignment, firms with December fiscal yearend

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

- 2 Average Momentum Profits
- 3 Momentum Reversal
- 4 Market States and Momentum
- 5 The Interaction of Momentum with Firm Characteristics
- 6 Risk Analysis

Average Momentum Profits Point estimates

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

	Price	Earnings
	momentum	momentum
а	2.52	5.41
[se]	[0.94]	[2.51]
κ	0.12	0.17
[se]	[0.02]	[0.03]

Average Momentum Profits

Deciles, alphas and overall model performance

	L	5	W	W-L	mae	[p-val]
			Price m	omentum		
ī ^s	4.04	12.36	19.13	15.09		
$\alpha^{\boldsymbol{q}}$	-1.61	1.32	-1.21	0.40	0.83	[0.04]
[t]	-0.39	0.44	-0.29	0.12		
			Earnings I	momentum	า	
₹	10.48	15.48	18.95	8.47		
$\alpha^{\boldsymbol{q}}$	-0.39	1.05	-1.31	-0.92	0.63	[0.09]
[t]	-0.09	0.25	-0.37	-0.36		

Average Momentum Profits Comparative statics

-

Components of expected stock returns: I_{it}/K_{it} , Y_{it+1}/K_{it+1} , $(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$, and w_{it}

Average Momentum Profits

Expected return components

	Loser	5	Winner	W-L	[<i>t</i>]			
		Pr	rice mome	ntum				
I _{it} /K _{it}	0.22	0.19	0.25	0.04	[3.6]			
$(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$	0.83	0.99	1.15	0.32	[15.4]			
Y_{it+1}/K_{it+1}	3.16	3.00	4.10	0.94	[5.6]			
W _{it}	0.34	0.25	0.22	-0.12	[-7.2]			
	Earnings momentum							
I _{it} /K _{it}	0.19	0.19	0.20	0.01	[2.2]			
$(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$	0.95	1.00	1.05	0.10	[5.0]			
Y_{it+1}/K_{it+1}	3.01	3.06	3.53	0.52	[3.7]			
W _{it}	0.29	0.28	0.20	-0.09	[-7.5]			

_

Average Momentum Profits Comparative statics

	Loser 5 Winner		W-L							
		Price momentum								
$\overline{I_{it}/K_{it}}$	-2.58	3.77	-7.23	-4.65						
$\overline{q_{it+1}/q_{it}}$	-7.26	1.00	2.66	9.92						
$\overline{Y_{it+1}/K_{it+1}}$	-2.59	-0.56	4.13	6.73						
<i>w_{it}</i>	-1.39	1.22	-1.48	-0.09						
	Earnings momentum									
$\overline{I_{it}/K_{it}}$	0.62	2.89	-4.54	-5.16						
$\overline{q_{it+1}/q_{it}}$	-3.20	0.88	0.88	4.07						
$\overline{Y_{it+1}/K_{it+1}}$	-1.65	0.24	1.71	3.36						
Wit	-0.57	1.20	-2.52	-1.95						

2 Average Momentum Profits

3 Momentum Reversal

- 4 Market States and Momentum
- 5 The Interaction of Momentum with Firm Characteristics

6 Risk Analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

$\begin{array}{c} \mathsf{Reversal} \\ \mathsf{Price\ momentum,}\ r^{S}_{it+1}\ \mathsf{and}\ r^{Iw}_{it+1} \end{array}$

Reversal

Price momentum, $(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$ and Y_{it+1}/K_{it+1}

Reversal

Earnings momentum, r_{it+1}^{S} and r_{it+1}^{Iw}

Reversal

Earnings momentum, $(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$ and Y_{it+1}/K_{it+1}

1 The Model

- 2 Average Momentum Profits
- 3 Momentum Reversal
- 4 Market States and Momentum
- 5 The Interaction of Momentum with Firm Characteristics

6 Risk Analysis

Market States and Momentum

・ロト ・ 日 ・ モ ヨ ト ・ 日 ・ うへつ

Cooper, Gutierrez, and Hameed (2004), UP (DOWN) defined as the market returns nonnegative (negative) over the prior year

State	Price momentum Profits [<i>t</i>]			Earnings momentur Profits [1]				
	1 101105	["]			["			
DOWN	2.21	[0.62]	r ^S	1.31	[0.40]	r ^S		
UP	9.89	[5.04]	r ^S	5.04	[6.73]	r ^S		
DOWN	9.19	[4.50]	r ^{lw}	4.50	[2.46]	r ^{lw}		
UP	6.87	[4.64]	r ^{lw}	4.64	[6.51]	r ^{lw}		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 The Model

- 2 Average Momentum Profits
- 3 Momentum Reversal
- 4 Market States and Momentum

5 The Interaction of Momentum with Firm Characteristics

6 Risk Analysis

GMM tests, price momentum

	Size	Age	Trading volume	Credit ratings	Stock return volatility	Book-to- market
а	2.33	2.37	2.76	1.97	3.17	3.44
[se]	0.70	0.95	0.93	0.83	0.82	0.89
κ	0.09	0.12	0.12	0.12	0.12	0.13
[se]	0.01	0.01	0.01	0.01	0.02	0.01
p-val	0.00	0.00	0.00	0.00	0.00	0.00
mae	3.66	1.29	1.67	1.68	1.92	3.10

GMM tests, earnings momentum

	Size	Age	Trading volume	Credit ratings	Stock return volatility	Book-to- market
а	2.74	2.75	2.56	1.14	2.74	7.20
[se]	0.60	1.55	1.32	0.72	0.76	2.36
κ	0.09	0.12	0.12	0.11	0.12	0.16
[se]	0.01	0.02	0.02	0.01	0.02	0.02
p-val	0.00	0.27	0.00	0.00	0.00	0.01
mae	4.37	1.08	2.30	1.35	1.95	2.88

・ロト ・聞ト ・ヨト ・ヨト

200

æ

・ロト ・聞ト ・ヨト ・ヨト

୍ରର୍ତ

æ

1 The Model

- 2 Average Momentum Profits
- 3 Momentum Reversal
- 4 Market States and Momentum
- 5 The Interaction of Momentum with Firm Characteristics

6 Risk Analysis

Risk Analysis Long-run risk in the stock return

Bansal, Dittmar, and Lundblad (2005) show that aggregate consumption risks in cash flows help explain momentum profits:

$$g_{i,t} = \gamma_i \left(\frac{1}{8} \sum_{k=1}^8 g_{c,t-k}\right) + u_{i,t}$$

g_{i,t}: demeaned log real dividend growth of momentum decile i
 g_{c,t}: demeaned log real growth rate of aggregate consumption
 γ_i: cash flow exposure to long-run consumption growth

Risk Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Long-run risk in the investment return

Define the cash flow in the investment return as:

$$D_{it+1}^{\star} = (1 - \tau_{t+1}) \left[\kappa \frac{Y_{it+1}}{K_{it+1}} + \frac{a}{2} \left(\frac{I_{it+1}}{K_{it+1}} \right)^2 \right] + \tau_{t+1} \delta_{it+1}$$

Let $g_{i,t}^{\star}$: demeaned log real growth of D_{it+1}^{\star} for momentum decile *i*:

$$g_{i,t}^{\star} = \gamma_i^{\star} \left(\frac{1}{8} \sum_{k=1}^{8} g_{c,t-k} \right) + u_{i,t}$$

• γ_i^{\star} : cash flow exposure to long-run consumption growth

Risk Analysis

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Evidence of long-run risk in investment returns

	Price momentum				_	Ear	nings m	noment	um
	γ_i	[se]	γ_i^\star	[se]	_	γ_i	[se]	γ_i^\star	[se]
L	-3.09	[4.41]	4.21	[2.09]		-1.27	[2.51]	6.77	[2.06]
5	0.18	[1.27]	5.52	[1.20]		1.21	[2.20]	5.82	[1.49]
W	14.94	[9.04]	15.95	[2.87]		3.70	[1.94]	9.02	[1.64]
W-L	19.28	[11.66]	11.74	[2.78]		4.97	[3.43]	2.26	[1.67]

Conclusion Summary and future work

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The investment model consistent with many (but not all) aspects of momentum

 Managers align investment properly with costs of capital: Momentum might not imply investor mispricing

Future work: Value and momentum jointly, industry-specific parameters; integration with the consumption CAPM