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Financially Constrained Stock Returns

DMITRY LIVDAN, HORACIO SAPRIZA, and LU ZHANG∗

ABSTRACT

We study the effect of financial constraints on risk and expected returns by extend-
ing the investment-based asset pricing framework to incorporate retained earnings,
debt, costly equity, and collateral constraints on debt capacity. Quantitative results
show that more financially constrained firms are riskier and earn higher expected
stock returns than less financially constrained firms. Intuitively, by preventing firms
from financing all desired investments, collateral constraints restrict the flexibility of
firms in smoothing dividend streams in the face of aggregate shocks. The inflexibility
mechanism also gives rise to a convex relation between market leverage and expected
stock returns.

A VOLUMINOUS LITERATURE in corporate finance and macroeconomics has studied
in depth the impact of financial constraints on firm value, capital investment,
and business cycles.1 In asset pricing, an important open question is how fi-
nancial constraints affect risk and expected returns. Using the Kaplan and
Zingales (1997) index of financial constraints, Lamont, Polk, and Saá-Requejo
(2001) report that more constrained firms earn lower average returns than less
constrained firms. However, Whited and Wu (2006) use an alternative index
and find that more constrained firms earn higher average returns than less
constrained firms, although the difference is insignificant.

Conflicting evidence is difficult to interpret without models that explicitly
tie the characteristics in question with risk and expected returns. We aim to
fill this gap. We study the effect of financial constraints on risk and expected
stock returns by extending the neoclassical investment framework to incorpo-
rate retained earnings, debt, costly equity, and collateral constraints on debt
capacity. In doing so, we fill an important void in the literature. To the best
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of our knowledge, we are among the first to integrate rich debt dynamics into
investment-based asset pricing.

Our framework is built on the dynamic asset pricing model of Zhang (2005)
and the dynamic capital structure model of Hennessy and Whited (2005). Firms
face both aggregate and firm-specific productivity shocks. The aggregate shock
is the source of systematic risk, and the firm-specific shock is the source of
firm heterogeneity. Adding to the Hennessy–Whited model with risk neutral-
ity, we follow Zhang in modeling the aggregate shock and parameterizing the
stochastic discount factor to study the cross-section of expected returns. Adding
to Zhang’s model with all equity financing, we follow Hennessy and Whited in
allowing firms to borrow up to their debt capacity determined by collateral val-
ues. The collateral constraints require that the liquidation value of capital net
of depreciation is greater than or equal to the promised debt payment. We also
allow firms to retain earnings, but the interest rate when firms save is strictly
lower than the interest rate when they borrow. Firms can raise external equity
but with equity flotation costs. In this setting, firms choose investment and
next-period debt to maximize equity value subject to the collateral constraints.
The shadow price of new debt, which is given by the Lagrangian multiplier as-
sociated with the collateral constraints, precisely measures the extent to which
the financial constraints are binding.

We calibrate our model and study its quantitative properties. We provide sev-
eral fresh insights. Most important, more constrained firms are riskier and earn
higher expected returns than less constrained firms. In univariate sorts on sim-
ulated data, the decile with the highest shadow prices of new debt outperforms
the decile with the lowest shadow prices. The average return spread varies from
0.05% to 0.45% per month across different parameterizations of the model.

Intuitively, the risk of firms increases with the degree of their inflexibility in
adjusting capital investment to mitigate the impact of aggregate shocks on divi-
dend streams. After a positive aggregate shock hits the economy, firms increase
investments, meaning that dividends increase less than unit-by-unit with cash
flows. In effect, raising investments partially absorbs the impact of the posi-
tive shock and acts as a buffer for the dividend streams, thereby decreasing
risk. This inflexibility mechanism has been used before to understand the eq-
uity premium and the value premium (e.g., Jermann (1998), Zhang (2005), and
Cooper (2006)). By preventing firms from financing all desired investments,
collateral constraints work against the dividend smoothing mechanism. The
shadow price of new debt is an exact measure of the extent to which the con-
straints are binding. The higher the shadow price, the more inflexible firms
are in adjusting investments to smooth dividends, the more the dividends will
covary with business cycles, and the higher their risk and expected returns.

Our model prediction on the positive constraints–return relation does not
contradict the evidence on the negative relation between financial distress and
average stock returns.2 The crux is that financial constraints and financial

2 Using different measures of financial distress, Dichev (1998), Griffin and Lemmon (2002), and
Campbell, Hilscher, and Szilagyi (2008) document that more distressed firms earn lower average
returns than less distressed firms.
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distress are different (albeit related) concepts. For example, Lamont et al. (2001,
p. 529) observe:

Do firms face financial constraints that hamper their ability to invest?
By “financial constraints,” we mean frictions that prevent the firm from
funding all desired investments. This inability to fund investment might
be due to credit constraints or inability to borrow, inability to issue equity,
dependence on bank loans, or illiquidity of assets. We do not use “financial
constraints” to mean financial distress, economic distress, or bankruptcy
risk, although these things are undoubtedly correlated with financial con-
straints.

In contrast, Wruck (1990, p. 421) says:

This paper defines financial distress as a situation where cash flow is
insufficient to cover current obligations. These obligations can include
unpaid debts to suppliers and employees, actual or potential damages from
litigation, and missed principal or interest payments under borrowing
agreements (default).

This definition has been adopted by standard corporate finance textbooks, such
as Ross, Westerfield, and Jaffe (2008). Most telling, both Kaplan and Zingales
(1997) and Lamont et al. (2001) limit their samples to manufacturing firms with
positive real sales growth on the ground that “[r]estricting attention to firms
with growing sales also helps eliminate distressed firms from the construction
of the financial constraints factor, helping ensure that we are measuring con-
straint and not distress (Lamont et al., p. 532, footnote 1).” The differences
between financial constraints and financial distress also can be seen from their
respective relations with average returns. While the constraints–return rela-
tion is ambiguous, the distress–return relation is, as noted, reliably negative.
The collateral constraints in our setting primarily capture financial constraints,
not financial distress.

To make our quantitative results more comparable with the evidence of
Lamont et al. (2001) and Whited and Wu (2006), we conduct multivariate sorts
on size and the shadow price of new debt in our simulated data. We find that,
after controlling for size, more constrained firms outperform less constrained
firms by 7 to 16 basis points per month, but the average return differences are
insignificant. These results are largely consistent with the evidence of Lamont
et al. and Whited and Wu. More important, why is the constraints–return rela-
tion significant in univariate sorts, but not in bivariate sorts? The reason is that
risk and the shadow price are jointly determined with size and book-to-market
by underlying state variables in equilibrium. The shadow price predicts returns
because it contains information about the state variables, but the information
is not entirely independent of that contained by size and book-to-market.

Our model sheds light on the cross-sectional determinants of financial con-
straints. Firms with smaller capital, lower firm-specific productivity, and higher
current debt are more constrained (their shadow prices of new debt are higher).
Intuitively, the shadow price for a given firm is determined by its financial
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deficit, which is the difference between its desired investments and internal
funds. The higher the deficit, the higher the shadow price. For firms with small
scale of production, internal funds are low, but desired investments are high be-
cause of decreasing returns to scale. Further, firm-specific productivity shocks
have two offsetting effects. A positive shock raises cash flows, decreasing the
deficit, but it also raises desired investments (because the firm-specific pro-
ductivity is persistent), increasing the deficit. Quantitatively, the first effect
dominates, meaning that less profitable firms are more constrained. Finally,
because of debt repayments, firms with high current debt have fewer internal
funds available to finance investments. These firms are therefore more con-
strained.

We use our model as a natural laboratory to study quantitatively the em-
pirical determinants of financial constraints. Consistent with the evidence in
Kaplan and Zingales (1997) and Whited and Wu (2006), our quantitative results
show that firms are more constrained if they have lower cash flow-to-assets,
higher debt-to-assets, lower sales and sales growth, lower dividends-to-assets,
lower liquid assets or cash-to-assets, and higher Tobin’s Q. We also run a horse
race between the Kaplan–Zingales index and the Whited–Wu index to evaluate
their relative quality as empirical proxies for the shadow price of new debt in
the context of our model. We find that, although both indexes are positively
correlated with the shadow price, the Whited–Wu index appears to do a better
job than the Kaplan–Zingales index. However, in cross-sectional regressions,
both indexes leave substantial variation in the shadow price unexplained: Most
R2s are below 10%. This result casts doubt on the quality of empirical proxies
for financial constraints currently used in practice.

Finally, the inflexibility mechanism underlying the positive constraints–
return relation provides a new channel for leverage to affect risk and expected
returns. The standard leverage hypothesis says that, when asset beta is fixed,
high market leverage means high equity beta, which in turn means high aver-
age equity returns (e.g., Grinblatt and Titman (2001), pp. 381–384). When debt
is free of default, the equity beta equals the asset beta times the ratio of the
market value of assets divided by the market equity. Although debt is default
free in our model, the inflexibility mechanism causes the asset beta to increase
with leverage. Intuitively, more levered firms are burdened with more debt
and must repay existing debt before financing new investments. More levered
firms are more likely to be constrained financially, are less flexible in smooth-
ing dividends, and are more likely to have riskier assets. Therefore, while
the standard leverage hypothesis predicts a linear relation between market
leverage and expected returns, the inflexibility mechanism predicts a convex
relation.

Our model of financial constraints in the form of collateral constraints is more
realistic than dividend nonnegativity constraints used in the previous literature
(e.g., Gomes, Yaron, and Zhang (2003, 2006) and Whited and Wu (2006)). As
noted, our modeling of debt dynamics follows Hennessy and Whited (2005),
but we add aggregate shocks and asset pricing dynamics. And we contribute to
investment-based asset pricing (e.g., Cochrane (1991, 1996), Berk, Green, and
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Naik (1999), Carlson, Fisher, and Giammarino (2004, 2006), and Zhang (2005))
by studying the impact of debt dynamics on risk and expected returns.3

Section I describes the model. Section II calibrates and explains the basic
properties of the model solution. Section III presents the quantitative results.
We conclude in Section IV.

I. The Model

This section describes our theoretical framework.

A. Technology

The production function is given by

yjt = ext+zjtkα
jt, (1)

where yjt and kjt are the output and capital stock of firm j in period t, re-
spectively. The production technology exhibits decreasing returns to scale with
0 < α < 1.

Production is subject to both an aggregate shock, xt, and a firm-specific shock,
zjt. The aggregate shock, xt, evolves according to a stationary and monotone
Markov transition function, denoted Qx(xt+1 | xt), as follows:

xt+1 = x̄(1 − ρx) + ρx xt + σx εx
t+1. (2)

In equation (2) εx
t+1 is an i.i.d. standard normal shock, which serves as the

driving force of economic fluctuations and systematic risk. The firm-specific
productivity shocks, denoted zjt, are uncorrelated across firms, indexed by j,
and evolve according to a common stationary and monotone Markov transition
function, denoted Qz(zjt+1 | zjt), as follows:

z j t+1 = ρz zjt + σz εz
j t+1. (3)

In equation (3) εz
jt+1 is an i.i.d. standard normal shock, and is the ultimate

driving force of firm heterogeneity. When i 	= j, εz
jt+1 and εz

it+1 are uncorrelated,
and εx

t+1 is independent of εz
jt+1 for all j.

The operating profit function for firm j with capital stock kjt, idiosyncratic
productivity zjt, and aggregate productivity xt is

π (kjt, zjt, xt) = ext+zjtkα
jt − f , (4)

where f > 0 is the nonnegative fixed costs of production, which must be paid
every period.

3 Since circulating our draft that contains an asset pricing model with debt dynamics in October
2006 (see Livdan, Sapriza, and Zhang (2006)), we have become aware of several related papers
(e.g., Obreja (2006), Garlappi and Yan (2007), Gomes and Schmid (2007), and Garlappi, Shu, and
Yan (2008)). Our work differs from Garlappi and Yan, and Garlappi et al. who model financial
distress, and from Obreja and Gomes and Schmid, who only focus on the relation between leverage
and average returns.
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B. Stochastic Discount Factor

Following Zhang (2005), we use the partial equilibrium neoclassical invest-
ment framework to study asset pricing. This choice is reasonable because we
focus on the link between corporate policies and asset prices. We hope that the
omission of consumption can be adequately compensated by detailed firm dy-
namics that are absent from consumption-based asset pricing. We parameterize
the stochastic discount factor, denoted mt+1, as follows:

log mt+1 = log η + γt(xt − xt+1) (5)

γt = γ0 + γ1(xt − x̄), (6)

where 1 > η > 0, γ0 > 0, and γ1 < 0 are constant parameters, and γt decreases
in xt − x̄ to capture the time-variation in the price of risk.

C. Investment Costs

The capital stock evolves according to

k j t+1 = (1 − δ)kjt + ijt, (7)

where δ is the rate of capital depreciation and ijt is investment. When investing,
firms incur purchase costs and capital adjustment costs. The total investment
cost function, denoted φ(ijt, kjt), is assumed to be asymmetric and quadratic

φ(ijt, kjt) ≡ ijt +
aP 1i

jt + aN
(
1 − 1i

jt

)
2

(
ijt

kjt

)2

kjt, (8)

where 1i
jt ≡ 1{ijt≥0} and 1{·} is the indicator that equals one if the event described

in {·} is true and zero otherwise. We assume aN > aP > 0 to capture costly re-
versibility (e.g., Abel and Eberly (1994, 1996) and Hall (2001)), meaning that
firms face higher costs of adjustment in cutting than expanding capital.4

D. Collateral Constraints

We follow Hennessy and Whited (2005) and model only single-period debt.
Let bjt+1 represent the face value of one-period debt chosen by firm j at the
beginning of period t with payment due at the beginning of period t + 1. Positive
values of bjt+1 mean that the firm is borrowing and negative values mean that
the firm is retaining earnings (saving).

When borrowing, firms face collateral constraints, which require that the
liquidation value of capital net of depreciation is greater than or equal to the
promised debt payment. Formally,

4 Zhang (2005) uses asymmetric adjustment costs to address the value premium (the stylized
fact that value firms with high book-to-market equity earn higher returns on average than growth
firms with low book-to-market equity). In contrast, we focus on the relation between financial
constraints and expected returns.
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bj t+1 ≤ s0(1 − δ)k j t+1, (9)

where 0 < s0 < 1 is a constant parameter. In the event of liquidation, capital can
only be sold at a depressed price, s0 < 1 (the price of new capital is normalized
to be one). The amount of (1 − s0)(1 − δ)kjt+1 is lost in the liquidation process as
liquidation costs.

To capture the fact that recovery rates are lower and liquidation costs are
higher in recessions (e.g., Shleifer and Vishny (1992), Altman, Resti, and Sironi
(2004), Altman, Brady, Resti, and Sironi (2005), and Acharya, Bharath, and
Srinivasan (2007)), we implement an alternative parametrization of the collat-
eral constraints, namely,

bj t+1 ≤ s0e(xt−x̄)s1 (1 − δ)k j t+1, (10)

where s1 > 0. If s1 = 0, we are back to the benchmark case in equation (9). But
when s1 > 0, the debt capacity will be lower in bad times when xt < x̄.

Because the collateral constraints guarantee that lenders always get repaid
in full, all corporate debts are riskless and their interest rates equal to the
risk-free rate rft. Thus, by committing the repayment of bjt+1 at the beginning
of t + 1, firm j obtains cash inflow bjt+1/rft at the beginning of t.

E. Retained Earnings

Because of the collateral constraints, firms are not indifferent between sav-
ings and cash distributions. If the interest rate earned by corporate savings,
denoted rst, equals the risk-free borrowing rate, rft, firms will save all the free
cash flow and never distribute. In practice, firms do distribute cash to share-
holders because of costs associated with holding cash. Graham (2000) reports
that cash retentions are tax-disadvantaged because their tax rates generally
exceed tax rates on interest income for bondholders. To capture this effect, we
follow Hennessy, Levy, and Whited (2007) and assume that the saving rate is
strictly less than the borrowing rate, namely,

rst = r f t − κ, (11)

where κ > 0 is a constant wedge between borrowing and saving rates. Cooley
and Quadrini (2001) further justify rst < rft. Suppose the two rates are equal.
With financial frictions, firms would strictly prefer to reinvest profits, generat-
ing an excessive supply of loanable funds that subsequently reduce the saving
rate to a level below the borrowing rate.

For notational simplicity, let 1b
j t+1 ≡ 1{bj t+1≥0} be the indicator function that

equals one if firm j borrows at time t and zero otherwise. Because bjt+1 is a
choice variable, 1b

jt+1 is known at the beginning of t. Further, we let

ιjt ≡ 1b
j t+1 r f t + (

1 − 1b
j t+1

)
rst (12)

denote the interest rate applicable to firm j from time t to t + 1, known at the
beginning of t.
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F. Costly External Equity

When the sum of the investment costs, φ(ijt, kjt), and promised debt repay-
ment, bjt, exceeds the sum of internal funds, πjt, and cash inflows from issuing
new debt, bjt+1/ιjt, the firm can raise new equity capital, ejt, to compensate for
the financial deficit:

ejt ≡ max
{
φ(ijt, kjt) + bjt − π (kjt, zjt, xt) − bj t+1

ιjt
, 0

}
. (13)

Motivated by empirical evidence (e.g., Smith (1977), Lee et al. (1996), and Al-
tinkilic and Hansen (2000)), we assume that there are flotation costs of issuing
external equity. These flotation costs are important within the model. If firms
can raise new equity without incurring any costs, the collateral constraints will
never be binding.

We use a flexible functional form for the equity flotation costs

λ(ejt, kjt) = λ01e
jt + λ1

2

(
ejt

kjt

)2

kjt, (14)

where λ0 > 0, λ1 > 0, and 1e
jt ≡ 1{ejt>0} is the indicator function that equals one

if firm j issues equity and zero otherwise. The first term in the right-hand
side of equation (14) captures the fixed costs of issuing equity, and the second
term captures the convex and variable costs. Also, to capture the idea that
equity issuance costs can be countercyclical à la Covas and Den Haan (2007),
we specify an alternative flotation costs function

λ(ejt, kjt) = λ01e
jt + λ1e−(xt−x̄)λ2

2

(
ejt

kjt

)2

kjt, (15)

where setting λ2 > 0 makes the cost of issuing equity countercyclical.
When the sum of investment costs and debt repayments is lower than the sum

of internal funds and cash inflows from new debt, firms distribute the difference
back to shareholders. Firms do not incur any costs when distributing cash. We
do not model specific forms of the payout (dividend vs. share repurchases),
meaning that we only pin down the total amount of payout.

G. The Market Value of Equity

Define the effective payout accrued to the shareholders as

ojt ≡ π (kjt, zjt, xt) − φ(ijt, kjt) + bj t+1

ιjt
− bjt − λ(ejt, kjt). (16)

In words, ojt is profits minus investment costs plus cash inflows from new debt
net of repayment of old debt minus equity flotation costs. When the new equity
is positive, ojt can be negative. Empirically, ojt corresponds to total net payouts,
which are dividends plus repurchases less equity issuances (e.g., Boudoukh
et al. (2007)).
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Let v(kjt, bjt, zjt, xt) denote the market value of equity for firm j. Using Bell-
man’s Principle of Optimality, we can formulate the firm’s dynamic equity value
maximization problem as

v(kjt, bjt, zjt, xt) = max
{ijt,bj t+1}

{ojt + Et[mt+1v(k j t+1, bj t+1, z j t+1, xt+1)]}, (17)

subject to the capital accumulation equation (7) and the collateral constraints
(equation (9) or (10)).

H. The Shadow Price of New Debt

Let νjt ≡ ν(kjt, bjt, zjt, xt) be the Lagrange multiplier associated with the col-
lateral constraints. We can interpret νjt as the shadow price of new debt. The
higher νjt, the more financially constrained firm j is. Appendix A shows that

νjt = 1
r f t

λe(ejt, kjt)1e
jt − Et

[
mt+1λe(e j t+1, k j t+1)1e

j t+1

]
, (18)

where λe(ejt, kjt) is the first derivative of λ with respect to ejt when ejt > 0.
The interpretation of equation (18) is intuitive. Because debt and equity are

two sources of external funds, the shadow price of new debt depends on the
debt-equity tradeoff. On the one hand, one additional unit of debt saves firm
j an amount that equals the marginal cost of equity finance, λe(ejt, kjt)1e

jt. This
marginal benefit of new debt must be discounted by rft because the firm only
raises 1/rft at the beginning of t by agreeing to pay one additional unit of debt,
bjt+1, at the beginning of t + 1. On the other hand, there are costs associated
with borrowing one additional unit of debt because it must be repaid. Having
to repay the debt at the beginning of t + 1 means that the firm must incur
the marginal equity flotation costs λe(ejt+1, kjt+1)1e

jt+1. This (stochastic) amount
must be discounted back to the beginning of t, as shown in the second term in
the right-hand side of equation (18).

I. Risk and Expected Returns

Evaluating the value function in equation (17) at the optimum yields

vjt = ojt + Et[mt+1vj t+1]. (19)

Moving ojt to the left-hand side and dividing both sides by vjt − ojt, we obtain
1 = Et[mt+1r j t+1], where rjt+1 ≡ vjt+1/(vjt − ojt) is the stock return. Note that
vjt is the cum-dividend equity value because it is measured before the effective
dividends are paid out. We further rewrite 1 = Et[mt+1r j t+1] as the beta-pricing
form given by

Et[r j t+1] − r f t = βjtζmt , (20)
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where rft ≡ 1/Et[mt+1] is the real risk-free rate from period t to t + 1, risk is
given by

βjt ≡ −Covt[r j t+1, mt+1]
Vart[mt+1]

, (21)

and the price of risk is given by ζmt ≡ Vart[mt+1]/Et[mt+1].

J. Discussion

In the context of financial constraints, our model is among the first to incor-
porate debt dynamics into investment-based asset pricing. Cooper and Ejarque
(2003), Gomes, Yaron, and Zhang (2003, 2006), and Whited and Wu (2006) cap-
ture financial constraints as dividend nonnegativity constraints in standard
investment-based models. But these constraints are extremely restrictive be-
cause firms cannot issue equity, borrow, or retain earnings. Whited (1992), Bond
and Meghir (1994), and Hennessy and Whited (2005, 2007) model debt dynam-
ics but with risk neutrality, meaning that all firms earn exactly the risk-free
rate ex ante.

Because our setting is richer than most existing investment-based models
(e.g., Berk et al. (1999), Carlson et al. (2004), and Zhang (2005)), we can link
risk and expected returns to characteristics such as the shadow price of new
debt and leverage not captured by most existing studies. To foreshadow our new
results on the determinants of risk, we find that high leverage ratios reduce the
flexibility of firms in smoothing cash flows accrued to shareholders via capital
investment. Reflecting the relative inflexibility, the shadow price of new debt
increases with risk and expected returns.

Although our model breaks new ground, we leave salient features of debt
outside our framework. We do not model defaultable bonds. The collateral
constraints make all bonds risk-free in our framework. While default is in-
dispensable in modeling financial distress, we view collateral constraints as
a reasonable approach for capturing financial constraints (e.g., Kiyotaki and
Moore (1997), Hennessy and Whited (2005), and Almeida and Campello (2007)).
As noted, financial constraints and financial distress are related but separate
concepts. Both Kaplan and Zingales (1997) and Lamont et al. (2001) restrict
their samples to manufacturing firms with positive real sales growth to elimi-
nate distressed firms. Using collateral constraints therefore befits our economic
question, namely, how financial constraints affect risk and expected returns.

II. Qualitative Analysis

We calibrate the model in Section II.A, present the basic properties of
the model solution in Section II.B, and discuss the underlying intuition in
Section II.C. Appendix B details the solution algorithm.



Financially Constrained Stock Returns 1837

Table I
Benchmark Parameter Values

This table lists the benchmark parameter values used to solve and simulate our model with the
collateral constraints.

Parameter Value Description

α 0.65 Curvature in the production function
δ 0.01 Monthly rate of capital depreciation
ρx 0.951/3 Persistence coefficient of aggregate productivity
σx 0.007/3 Conditional volatility of aggregate productivity
η 0.994 Time preference coefficient
γ0 50 Constant price of risk parameter
γ1 −1,000 Time-varying price of risk parameter
aP 15 Adjustment cost parameter when investment is positive
aN 150 Adjustment cost parameter when investment is negative
ρz 0.96 Persistence coefficient of firm-specific productivity
σz 0.10 Conditional volatility of firm-specific productivity
f 0.015 Fixed costs of production
s0 0.85 Liquation value per unit of capital net of (acyclical) bankruptcy cost
s1 0 Countercyclical liquidation cost parameter
λ0 0.08 Fixed flotation cost parameter
λ1 0.025 Convex (acyclical) f lotation cost parameter
λ2 0 Countercyclical flotation cost parameter
κ 0.50%/12 Monthly wedge between the borrowing and saving rates of interest

A. Calibration

We calibrate all model parameters at the monthly frequency to be consistent
with the empirical literature. Table I reports the parameter values that we use
to solve and simulate the model.

We set the curvature parameter in the production production, α, to be 0.65,
which is roughly the average of the estimates provided by Cooper and Ejarque
(2001, 2003), Cooper and Haltiwanger (2006), and Hennessy and Whited
(2005, 2007). The monthly depreciation rate δ is 0.01, which implies an an-
nual rate of 12%. The persistence of the aggregate productivity process, ρx,
is 0.951/3 = 0.983, and its conditional volatility, σx, is 0.007/3 = 0.0023. With
the first-order autoregressive specification for xt, these monthly values corre-
spond to the quarterly values of 0.95 and 0.007, respectively, consistent with
Cooley and Prescott (1995). The long-run average of xt , x̄, only affects the scale
of the economy, and we choose x̄ = −3.75. Further, we set the three parameters
governing the stochastic discount factor η = 0.994, γ0 = 50, and γ1 = −1000 to
generate an average Sharpe ratio of 0.41, an average annual real interest rate
of 2.20%, and an annual volatility of real interest rate of 2.90% all of which are
similar to those in the data.

The adjustment cost parameters, aP and aN , can be interpreted as the periods
required to expand and cut capital given a one unit change in the marginal q,
respectively. We set aP = 15 and aN = 150 months, which are close to the aver-
age estimates in the empirical investment literature (e.g., Shapiro (1986) and
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Whited (1992)). For the persistence ρz and conditional volatility σz in the firm-
specific productivity, we set ρz = 0.96 and σz = 0.10. These values are chosen to
generate a plausible amount of dispersion in the cross-sectional distribution of
firms. In particular, the average annual cross-sectional volatility of individual
stock returns is around 27%.

We set the fixed costs of production, f , to be 0.015. Because f reduces the
profits in equation (4), it directly reduces the market value of equity. Follow-
ing Gomes (2001) and Zhang (2005), we choose f > 0 such that the average
aggregate book-to-market equity in the model economy is 0.71, which roughly
matches that in the data, 0.67, reported by Pontiff and Schall (1999). A positive
f also generates the operating leverage effect à la Carlson et al. (2004) (see
also Zhang (2005), Table IV) that helps explain the cross-section of expected
returns.

The calibration of α and f is connected. A lower α means steeper curvature in
the operating profit function and lower book-to-market equity from, for exam-
ple, monopoly power à la Cooper and Ejarque (2001). Thus, a higher f is required
to increase the average aggregate book-to-market to an empirically plausible
level. As a technical matter, when f > 0, firms with extremely small values of
capital (close to zero) and extremely low realizations of the firm-specific produc-
tivity z cannot survive. The equity value of these firms can be negative because
we do not allow firms to exit the economy. Fortunately, negative equity values
rarely occur in our model simulations. As noted, the long-run average capital
for a given firm is around one in our simulations.

For the liquidation cost parameters, we set s0 = 0.85, which implies propor-
tional liquidation costs of 15%, consistent with empirical studies. For exam-
ple, Altman (1984) estimates the average liquidation costs to be 12% of the
firm value 3 years prior to the petition date and 16.7% at the petition date.
Hennessy and Whited (2007) estimate liquidation costs to be 10.4% of the value
of the assets. In the benchmark calibration, we set s1 = 0. For the countercycli-
cal liquidation costs case, we set s1 = 10.79, such that s0e(xt−x̄)s1 = 0.70 when
xt is one unconditional standard deviation below its long-run average x̄. Also,
s0e(xt−x̄)s1 = 1.03 when xt is one unconditional standard deviation above x̄: Cap-
ping s0e(xt−x̄)s1 to be below one across all realizations of xt yields similar results
(not reported).

For the equity flotation costs, we calibrate the fixed costs parameter, λ0, to be
0.08 and the flow costs parameter, λ1, to be 0.025. These parameter values are
from Gomes (2001), who estimates these parameters based on Smith (1977).
In the benchmark calibration, we set λ2 = 0. For the case with countercyclical
equity issuance costs, we set λ2 = 38.51, which means λ1e−(xt−x̄)λ2 = 0.05 when
xt is one unconditional standard deviation below its long-run average x̄, and
λ1e−(xt−x̄)λ2 = 0.0125 when xt is one unconditional standard deviation above x̄.

Armed with these parameter values, we use value function iteration tech-
niques to solve the model. It is worthwhile to point out that solving the model
is technically challenging because of “the curse of dimensionality” (e.g., Judd
(1998), p. 430). To be (relatively) realistic, our model has in total four state
variables (capital stock kjt, current-period debt bjt, firm-specific productivity
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zjt, and aggregate productivity xt). Further complicating the solution algorithm
are the two control variables (next-period capital kjt+1 and next-period debt
bjt+1). By way of contrast, Hennessy and Whited (2005) have two controls and
three states, and Hennessy and Whited (2007) have two controls and two states.
Also, Hennessy and Whited calibrate and solve their models at the annual fre-
quency, but our asset pricing applications require the monthly frequency. The
higher frequency lowers the convergence speed of our solution algorithm by
an order of magnitude. Another useful comparison is with Zhang (2005), who
solves his model with four states at the monthly frequency, but he has only one
control. Despite the curse of dimensionality, we opt to use the value function
iteration algorithm because of its well-known stability and precision.

B. Properties of the Model Solution

Using the benchmark parametrization, we discuss how key endogenous vari-
ables such as the shadow price of new debt and risk are determined by the
underlying state variables.

B.1. Market Equity-to-Capital and Optimal Investment-to-Capital

From Panels A and B in Figure 1, firms with small capital and high firm-
specific productivity have high market equity-to-capital ratios, vjt/kjt, consis-
tent with the evidence in Fama and French (1992, 1995). Also, firms have high
market equity-to-capital when the aggregate productivity is high, consistent
with the evidence on time-series predictability with aggregate valuation ratios
(e.g., Kothari and Shanken (1997) and Pontiff and Schall (1999)). Panels E and
F show that firms with small capital and high firm-specific productivity also in-
vest more relative to their capital and grow faster, consistent with the evidence
in Fama and French (1995). Because investment-to-capital is independent of
capital with constant returns to scale, the inverse relation between investment-
to-capital and capital is driven by the decreasing returns to scale technology
(α < 1).

From Panels C and D of Figure 1, market equity-to-capital decreases with
the current-period debt, bjt.5 Intuitively, a high debt burden in the current
period lowers the equity value through two channels. First, one more dollar
in bjt means one less dollar for the effective dividends in the current period
(see equation (16)). Second, a higher bjt imposes higher equity flotation costs
on firms to finance investment. Further, Panels G and H show that firms with
a large amount of debt invest less than firms with a small or even negative
amount of debt (corporate liquidity). Intuitively, firms with more debt must
finance at least in part with costly external equity.

5 This result is expected. Ignoring the fixed costs that make the value function nondifferentiable,
we can invoke the Envelope Theorem to obtain ∂v(kjt, bjt, zjt, xt)/∂bjt = −(1 + λe(ejt, kjt)1e

jt) < 0.
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B.2. Optimal Next-Period Debt-to-Capital and the Shadow
Price of New Debt

Panels A to D in Figure 2 plot the optimal next-period debt-to-capital, bjt+1/kjt,
against the underlying state variables. Several intuitive patterns arise. Firms
with a small scale of production and low firm-specific productivity borrow more
(Panel A). Also, the debt-to-capital ratio is persistent because firms with more
current-period debt borrow more and firms with more corporate savings re-
tain more earnings (Panels C and D). These predictions are largely consistent
with the empirical evidence (e.g., Titman and Wessels (1988), Smith and Watts
(1992), and Rajan and Zingales (1995)). The relation between debt-to-capital
and aggregate productivity (xt) is ambiguous. Fixing debt at its long-run aver-
age, we see that bjt+1/kjt increases with xt (Panel B). But fixing capital at its
long-run average, we see that bjt+1/kjt decreases with xt when bjt > 0 (Panel D).
Accordingly, we use simulations in Section III.C to sort out the cyclical proper-
ties of leverage ratios.

From Panels E and F of Figure 2, the shadow price of new debt, νjt, de-
creases in capital stock and in firm-specific productivity. Financial constraints
are therefore more binding for small and less profitable firms, consistent with
the available evidence.6 Further, Panels G and H show that firms with positive
retained earnings or low current-period debt are unconstrained financially (the
shadow price of new debt is zero). And firms with high current-period debt are
more constrained (the shadow price is positive).

B.3. Risk and Expected Excess Returns

Figure 3 plots expected excess returns and risk against the underlying state
variables. From Panels A, B, E, and F, firms with a small scale of production
and low firm-specific productivity are riskier and earn higher expected returns.
These results verify those of Carlson et al. (2004) and Zhang (2005). More im-
portant, the figure also sheds light on how the current-period debt, bjt, affects
risk and expected returns. From Panels C, D, G, and H, all else equal, firms
with high current-period debt are riskier and earn higher expected returns than
firms with low current-period debt (or with corporate savings). The positive re-
lation between the current-period debt and risk and expected returns is even
more dramatic for less profitable firms (Panels C and G). Further, as shown
in Figure 2, firms with small capital, low firm-specific productivity, and high
current-period debt are more financially constrained. Collectively, our model
suggests that more constrained firms are riskier and earn higher expected re-
turns than less constrained firms.

However, size and book-to-market equity are determined jointly and endoge-
nously with the shadow price of new debt by the underlying state variables.
To quantify the marginal effects of the shadow price on risk and expected re-
turns independent of market equity and book-to-market, we use multivariate

6 See, e.g., Chan and Chen (1991), Gertler and Gilchrist (1994), Perez-Quiros and Timmermann
(2000), Lamont et al. (2001), and Whited and Wu (2006).
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sorts or cross-sectional regressions in simulation-based experiments (see Sec-
tion III.A).

C. Intuition: Risk as Inflexibility

What drives the relation between financial constraints and risk? The key
word is inflexibility. In production economies, the risk of firms increases with
the degree of their inflexibility in adjusting capital investment to smooth divi-
dend streams in the face of exogenous aggregate shocks. The less flexible firms
are, the riskier their returns will be. Rouwenhorst (1995) and Jermann (1998),
among others, show that explaining the equity premium puzzle is more difficult
in a general equilibrium production economy than in an endowment economy.
After a positive aggregative shock in an endowment economy, dividends will in-
crease unit-by-unit with exogenous cash flows. In a production economy, firms
can increase investment (because of the persistence in the aggregate produc-
tivity), meaning that dividends will not covary as much with business cycles as
in an endowment economy. Higher investments serve as a buffer for the divi-
dend streams to absorb some of the impact from the positive aggregate shock,
thereby decreasing risk.

By preventing firms from financing all desired investments, collateral con-
straints work against the dividend smoothing mechanism. The shadow price
of new debt precisely measures the extent to which collateral constraints are
binding. The higher the shadow price, the more inflexible firms are in adjust-
ing investment, the more dividends will covary with business cycles, and the
higher their risk and expected returns.

This inflexibility mechanism is similar in nature to the mechanism in Zhang
(2005). By restricting investment flexibility, adjustment costs also work against
the dividend smoothing mechanism and drive up risk. Further, adjustment
costs are higher for cutting than expanding capital. In bad times, firms want to
scale down, especially value firms that are less profitable than growth firms.
Because cutting capital is more costly, value firms are less flexible, are more
correlated with economic downturns, and are riskier than growth firms. Al-
though related, our inflexibility mechanism stems from collateral constraints,
which are different from the adjustment costs studied by Zhang.

III. Quantitative Results

We use simulation-based experiments to study two key issues: the rela-
tion between financial constraints and average returns and the cross-sectional
determinants of financial constraints. We also examine the leverage–return
relation.

Our experiment design follows that of Kydland and Prescott (1982) and Berk
et al. (1999). We simulate 100 artificial panels, each of which has 3,000 firms and
480 months. The sample size is similar to that used in empirical studies based
on the Center for Research in Security Prices (CRSP)-COMPUSTAT merged
data set. We implement a variety of empirical procedures on each artificial
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panel and report the cross-simulation averaged results. Whenever possible, we
compare model moments with those in the data.

A. Financial Constraints and Average Stock Returns

We first examine the quantitative relations between the shadow price of new
debt and average stock returns. Using the Fama and French (1993) portfolio
approach, we construct portfolios by sorting on the shadow price, with and
without controlling for size. Because the shadow price is the precise measure of
financial constraints in our model, our quantitative results help interpret the
evidence in Lamont et al. (2001) and Whited and Wu (2006).

A.1. Univariate Sorts

Table II reports the average monthly stock returns for 10 deciles from an
annual one-way sort on the shadow price of new debt in simulated panels.

Table II
Average Monthly Percent Stock Returns for Portfolios Based

on One-Way Sorts on the Shadow Price of New Debt
in Model Simulations

This table reports average stock returns of 10 value-weighted portfolios from one-way sorts on the
shadow price of new debt on the collateral constraints. We report average returns in percent per
month for each portfolio as well as the average high-minus-low portfolios and its t-statistics. We
sort all firms based on their shadow prices of new debt at the beginning of each year and then hold
the portfolios for the whole year. For each model, we simulate 100 artificial panels, each of which
has 3,000 firms and 480 monthly observations, and we then report the across-simulation average
results. We report the simulation results from the model using the benchmark parameters reported
in Table I (Benchmark parametrization). We also report the results from four comparative static
experiments (s0 = 0.70, λ0 = 0.02, s1 > 0, and λ2 > 0).

Low 2 3 4 5 6 7 8 9 High FC tFC

Panel A: Benchmark Parametrization

0.33 0.37 0.43 0.44 0.46 0.50 0.54 0.57 0.61 0.67 0.34 3.54

Panel B: High Liquidation Costs, s0 = 0.70

0.14 0.14 0.15 0.15 0.16 0.16 0.18 0.18 0.18 0.19 0.05 2.23

Panel C: Low Equity Flotation Costs, λ0 = 0.02

0.37 0.40 0.45 0.50 0.52 0.53 0.58 0.61 0.62 0.62 0.25 4.63

Panel D: Countercyclical Liquidation Costs, s1 > 0

0.11 0.12 0.14 0.15 0.16 0.16 0.17 0.18 0.18 0.20 0.09 2.70

Panel E: Countercyclical Equity Flotation Costs, λ2 > 0

0.34 0.40 0.44 0.49 0.53 0.60 0.63 0.70 0.75 0.79 0.45 4.53
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Beside the benchmark parametrization, we also report results from four com-
parative static experiments. Panel B considers the case with high liquidation
costs, in which the liquidation value per unit of capital, s0, is reset to be 0.70
from its benchmark value of 0.85. We consider this case because Hennessy
and Whited (2005) estimate this parameter to be 0.59 but with a high p-value
of 0.35. Panel C considers the case with low fixed flotation costs, in which the
fixed flotation cost parameter, λ0, is reset to be 0.02 from its benchmark value of
0.08. Panel E reports the case with countercyclical liquidation costs with s1 > 0
and Panel F reports the case with countercyclical equity flotation costs with
λ2 > 0.

From Panel A of Table II, the one-way sort on the shadow price of new debt,
νjt, generates a positive relation between the shadow price and average re-
turns. The average return increases monotonically from 0.33% per month for
the lowest-shadow-price (least constrained) portfolio to 0.67% for the highest-
shadow-price (most constrained) portfolio. The average return spread between
the two extreme deciles is 0.34% per month (t = 3.54). The magnitude of the
spread varies from 0.05% to 0.45% per month across the four comparative static
experiments, and is significant in all four cases.

A.2. Multivariate Sorts

Using their respective measures of financial constraints, Lamont et al. (2001)
and Whited and Wu (2006) document that, after controlling for size, the average
return spread between the most constrained and the least constrained firms is
insignificantly different from zero.

We ask whether our model is consistent with this finding. Specifically, using
artificial panels we conduct two-way sorts on the shadow price of new debt and
market capitalization measured as the ex-dividend market value of equity (vjt −
ojt). Following Lamont et al. (2001) and Whited and Wu (2006), we define small-
caps (S), mid-caps (M), and large-caps (L) as firms in the bottom 40%, middle
20%, and top 40% of the sample sorted on market capitalization, respectively.
Similarly, low-, middle-, and high-shadow-price portfolios contain firms in the
bottom 40% (L), middle 20% (M), and top 40% (H) of the sample sorted on the
shadow price of new debt, respectively. We also define the average high-shadow-
price portfolio as HIGHFC ≡ (BH + MH + SH)/3, and the average low-shadow-
price portfolio as LOWFC ≡ (BL + ML + SL)/3, and the financial constraints
factor as FC ≡ HIGHFC − LOWFC.

Table III reports the model-implied average returns of the two-way sorted
portfolios in excess of the risk-free rate, and compares the model moments with
the data moments. From the last two columns of the table, Lamont et al. (2001)
and Whited and Wu (2006) estimate the average return of FC to be −0.13%
per month (t = −1.17) and 0.18% (t = 0.95), respectively. (The t-statistic for
the average FC return from Lamont et al. is calculated from the information
reported in their Table 5.) The column denoted “Benchmark” shows that the av-
erage FC return in our model is 0.12% per month (t = 1.11) with the benchmark
parametrization. Also, the magnitude of the average excess return for the nine
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Table III
Average Monthly Percentage Excess Returns for Portfolios Sorted

on the Shadow Price of New Debt and Market Capitalization
in Model Simulations

We report average returns in monthly percent in excess of the risk-free rate for nine value-weighted
portfolios sorted on market capitalization and the shadow price of new debt in model simulations.
The rankings are performed annually and independently such that each portfolio contains firms
in both a given size category and a given financial constraints category. Following Lamont, Polk,
and Saá-Requejo (2001) and Whited and Wu (2006), we define small-caps (S) as firms that are in
the bottom 40%, mid-caps (M) are firms in the middle 20%, and large-caps (B) are firms in the
top 40% of the sample sorted on market capitalization. Similarly, low-, middle-, and high-shadow-
price portfolios consist of firms in the bottom 40% (L), middle 20% (M), and top 40% (H) of the
sample sorted on the shadow price of new debt, respectively. We also define the average high-FC
portfolio as HIGH FC ≡ (BH + MH + SH)/3, and average low-FC portfolio as LOW FC ≡ (BL +
ML + SL)/3, and the financial constraints factor as FC ≡ HIGH FC − LOW FC. For each model we
simulate 100 artificial panels, each of which has 3,000 firms and 480 monthly observations, and
we then report the cross-simulation average results. The column denoted “Benchmark” reports
the simulation results from the model using the benchmark parameter values in Table I. We also
report results from four comparative static experiments. The column denoted “s0 = 0.70” reports
the results using the benchmark parameters except that the liquidation value per unit of capital
net of liquidation costs, s0, is reset to be 0.70. The column denoted “λ0 = 0.02” reports the results
using the benchmark parameters except that the fixed flotation cost of equity, λ0, is reset to be
0.02. The column denoted “s1 > 0” reports the results from the countercyclical liquidation costs
model with s1 > 0 (see equation (10)). The column denoted “λ2 > 0” reports the results from the
countercyclical equity flotation costs model with λ2 > 0 (see equation (15)). The last two columns
report those from Table I of Lamont et al. and from Table 4 of Whited and Wu, respectively.

Lamont et al. Whited and
Benchmark s0 = 0.70 λ0 = 0.02 s1 > 0 λ2 > 0 (2001) Wu (2006)

Small-caps
Low FC SL 0.61 0.25 0.68 0.28 0.68 0.45 0.89
Middle FC SM 0.64 0.31 0.75 0.34 0.84 0.67 0.66
High FC SH 0.75 0.40 0.88 0.38 0.91 0.38 0.83
Mid-caps
Low FC ML 0.45 0.14 0.56 0.16 0.56 0.37 0.65
Middle FC MM 0.50 0.16 0.60 0.21 0.74 0.56 0.81
High FC MH 0.59 0.16 0.65 0.25 0.84 0.26 0.74
Large-caps
Low FC BL 0.21 0.11 0.37 0.14 0.42 0.47 0.71
Middle FC BM 0.30 0.08 0.41 0.15 0.51 0.53 0.96
High FC BH 0.37 0.09 0.50 0.18 0.59 0.25 1.23
HIGH FC 0.51 0.22 0.63 0.26 0.74 0.30 0.93
LOW FC 0.39 0.06 0.51 0.16 0.67 0.43 0.75
FC 0.12 0.16 0.12 0.10 0.07 −0.13 0.18
tFC 1.11 0.56 0.98 0.89 0.63 −1.17 0.95

size-financial constraints portfolios is comparable with that in the data. Vary-
ing the liquidation costs and flotation costs parameters changes the magnitude
of the average excess returns for the size-financial constraints portfolios, but
does not affect the FC results.
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A.3. Cross-sectional Regressions

To further evaluate the marginal effects of the shadow price of new debt
on average returns, we perform cross-sectional regressions. Cross-sectional re-
gressions can be powerful in some circumstances because they provide an easy
way to control for different characteristics simultaneously. Multiple regression
slopes provide direct estimates of marginal effects. In contrast, sorts are clumsy
for controlling for multiple characteristics because some of the finely cut port-
folios can contain few firms in certain periods.

Table IV reports the Fama-MacBeth (1973) monthly cross-sectional regres-
sions of stock returns, rjt+1, from the beginning of month t to the beginning
of t + 1, on the shadow price of new debt, size, and book-to-market equity,
all of which are measured at the beginning of t. Size is defined as the loga-
rithm of the market value of equity, and book-to-market equity is measured as
ln [(kjt − bjt)/(vjt − ojt)] in simulated data. The table shows that size and book-
to-market largely subsume the effects of financial constraints on risk and ex-
pected returns. The slopes of the shadow price are all significantly positive in

Table IV
Fama-MacBeth (1973) Monthly Cross-sectional Regressions

of Percentage Stock Returns on the Shadow Price of New Debt,
Size, and Book-to-Market in Model Simulations

We report the Fama-MacBeth (1973) monthly cross-sectional regressions of stock returns, rjt+1, on
the shadow price of new debt, size, and book-to-market, all of which are measured at the beginning
of month t. νjt denotes the shadow price, ln(ME) is the logarithm of the market value of equity,
measured as ln(vjt − ojt) in the model, and ln(BE/ME) is the logarithm of the book-to-market equity
ratio, measured as ln((kjt − bjt)/(vjt − ojt)) in the model. We simulate 100 artificial panels, each of
which has 3,000 firms and 480 monthly observations, and then report the across-simulation average
slopes and t-statistics. We report the results from the model with the benchmark parametrization in
Table I (Benchmark). We also report four comparative static experiments (s0 = 0.70, λ0 = 0.02, s1 >

0, and λ2 > 0).

High Liquidation Cost
Benchmark (s0 = 0.70)

νjt ln (ME) ln (B/M) νjt ln (ME) ln (B/M)

1.69 1.17
(3.47) (2.10)
2.52 −1.96 3.67 0.63 −3.01 2.03
(0.79) (−2.55) (3.07) (1.59) (−2.26) (1.03)

Low Fixed Flotation Countercyclical Liquidation Countercyclical Flotation
Costs (λ0 = 0.02) Costs (s1 > 0) Costs (λ2 > 0)

νjt ln (ME) ln (B/M) νjt ln (ME) ln (B/M) νjt ln (ME) ln (B/M)

3.97 1.17 1.86
(2.12) (2.65) (3.07)
−1.96 −3.31 4.01 −0.76 −3.08 2.70 −1.25 −1.22 2.56
(−0.11) (−4.72) (3.07) (−0.53) (−2.46) (2.62) (−1.07) (−4.78) (2.64)
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univariate regressions. But the slopes become insignificantly positive and even
negative in multiple regressions once we control for size and book-to-market.

Why does the relation between financial constraints and average returns ap-
pear significant in the one-way sorts and univariate regressions but largely
insignificant in the two-way sorts and multiple regressions? The reason is that
risk and expected returns are jointly determined with other endogenous vari-
ables such as size, book-to-market, and the shadow price of new debt by the un-
derlying state variables. In our model firms differ in three state variables that
include capital stock (kjt), firm-specific productivity (zjt), and current-period
debt (bjt). The cross-section of risk and expected returns is ultimately deter-
mined by these firm-specific state variables, and the whole cross-sectional dis-
tribution also varies over time with aggregate productivity (xt). The shadow
price of new debt is correlated with risk and expected returns because it con-
tains information about the state variables that determine risk and expected
returns. But this information is not fully independent of the information cap-
tured by size and book-to-market because of the joint determination.

B. Cross-sectional Determinants of Financial Constraints

Because the shadow price of new debt is unobservable in the data, researchers
are forced to use observable characteristics to serve as proxies for financial
constraints. In the model simulations, we can calculate the shadow price as the
precise measure of the degree of financial constraints. It is therefore interest-
ing to ask, using our theoretical model as a natural laboratory, how well the
characteristics commonly used in practice can proxy for financial constraints.
The answer is mixed.

B.1. The Whited and Wu (2006) Characteristics

The first set of characteristics is from Whited and Wu (2006), who use cash
flow-to-assets (CFjt, measured as πjt/kjt in our model); debt-to-assets (TLTDjt,
measured as bjt1b

jt/kjt); the logarithm of assets (LNTAjt, measured as ln(kjt));
sales growth (SGjt, measured as yjt/yjt−1); and a dividend dummy (DIVPOSjt,
which takes the value of one if ojt > 0 and zero otherwise). The Whited–Wu
(WW) index of financial constraints is defined as

WWjt = −0.091 CFjt − 0.062 DIVPOSjt + 0.021 TLTDjt

− 0.044 LNTAjt − 0.035 SGjt. (22)

(Whited and Wu also use industry sales growth in their index. We do not use
this variable in our simulations because our one-sector model provides no cross-
sectional variation in industry sales growth. If we include this term in the
estimation, it will just be absorbed into the intercept term. Our model can
equivalently be interpreted as a multi-sector model by treating firm-specific
shocks as industry shocks. But then industry sales growth coincides with firm-
level sales growth.)
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Panel A of Table V reports Fama-MacBeth (1973) cross-sectional regressions
of the shadow price of new debt on contemporaneous characteristics motivated
from Whited and Wu (2006). Consistent with their evidence, our simulations
show that firms are more financially constrained if they have lower ratios of
cash flow to assets, higher ratios of debt to assets, lower sales, lower contem-
poraneous sales growth, and zero rather than positive dividend payments. The
slopes on these characteristics are also comparable to those in the data. This
general pattern holds both for the benchmark parametrization and for four
comparative static experiments.

B.2. The Kaplan and Zingales (1997) Characteristics

We also consider the characteristics used by Lamont et al. (2001) to proxy for
financial constraints. These characteristics are in turn motivated by Kaplan
and Zingales (1997). The list includes cash flow-to-assets (CFjt), debt-to-assets
(TLTDjt), dividend-to-assets (TDIVjt, measured as ojt(1 − 1e

jt)/kjt in the model),
liquid assets or cash-to-assets, (CASHjt, measured as −bjt(1 − 1b

jt)/kjt), and To-
bin’s Q (Qjt, measured as (vjt − ojt + bjt)/kjt). Kaplan and Zingales classify firms
on a scale from one to four on financial constraints, and perform an ordered
logit of the scale on the aforementioned characteristics. Lamont et al. use these
logit coefficients to construct the Kaplan–Zingales (KZ) index of financial con-
straints as follows:

KZjt = −1.002 CFjt + 3.139 TLTDjt − 39.368 TDIVjt

− 1.315 CASHjt + 0.283 Qjt. (23)

Panel B of Table V reports Fama-MacBeth (1973) cross-sectional regressions
of the shadow price of new debt on characteristics from Kaplan and Zingales
(1997). Consistent with their evidence, our simulations show that firms are
more financially constrained if they have lower cash flow-to-assets, higher
debt-to-assets, lower dividend-to-assets, lower liquid assets or cash-to-assets,
and higher Tobin’s Q. The slopes from the model are not literally compara-
ble to those from Lamont et al. (2001). The slopes in the data are from or-
dered logit regressions, and we opt to use more precise ordinary least squares
(OLS) regressions because we can precisely calculate the shadow price in
simulations.

B.3. A Horse Race

Armed with the “observable” shadow price of new debt in model simulations,
we use the model as a laboratory to evaluate the relative quality of the KZ
and WW indexes as measures of financial constraints. Specifically, we perform
Fama-MacBeth (1973) cross-sectional regressions of the shadow price, νjt, on the
indexes, KZjt and WWjt, both separately and jointly. We use the relative magni-
tudes of the slopes and the average cross-sectional R2s as measures of relative
quality for the indexes. To make the magnitudes of their slopes comparable, we
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standardize both indexes by dividing their demeaned values by their respective
standard deviations before using them in the regressions.

From Table VI, both the KZ index and the WW index are positively correlated
with the true shadow price. All the univariate slopes are significantly posi-
tive. However, the regression R2s are universally low, with the highest being
11.74%. This result means that both indexes leave much of the cross-sectional
variation in the true shadow price unexplained. From the relative magnitude
of the slopes, the WW index appears to do a better job than the KZ index as a

Table VI
Fama-MacBeth (1973) Cross-sectional Regressions of the Shadow

Price of New Debt on the Kaplan and Zingales (1997) and the Whited
and Wu (2006) Indexes of Financial Constraints

Using simulated panels, we report the Fama-MacBeth (1973) monthly cross-sectional regressions
of the shadow price of new debt, νjt, on the Kaplan and Zingles (1997, KZ) index and the Whited and
Wu (2006, WW) index of financial constraints, both separately and jointly. To make the magnitudes
of their slopes comparable, we standardize both indexes by dividing their demeaned values by their
respective standard deviations before using them in the cross-sectional regressions. We simulate
100 artificial panels, each of which has 3,000 firms and 480 monthly observations, and then report
across-simulation average Fama-MacBeth slopes, t-statistics (in parentheses), and average cross-
sectional R2s. We also report the average cross-sectional correlation between the KZ index and the
WW index. Panel A reports the quantitative results from the benchmark parametrization with the
parameter values in Table I. The remaining panels report four comparative static experiments:
the high liquidation costs case with s0 = 0.70 (Panel B), the low fixed flotation costs case with
λ0 = 0.02, the countercyclical liquidation costs case with s1 > 0, and the countercyclical flotation
costs case with λ2 > 0.

KZ R2 WW R2 KZ WW R2 Corr(KZ, WW)

Panel A: Benchmark Parametrization

0.017 0.05 0.108 0.10 0.014 0.108 0.12 0.50
(5.28) (11.47) (2.97) (11.53)

Panel B: High Liquidation Costs, s0 = 0.70

0.010 0.04 0.080 0.10 0.010 0.063 0.10 0.56
(7.22) (13.30) (7.28) (4.51)

Panel C: Low Fixed Flotation Costs, λ2 = 0.02

0.021 0.07 0.151 0.09 0.011 0.120 0.09 0.47
(6.02) (6.82) (3.65) (3.81)

Panel D: Countercyclical Liquidation Costs, s1 > 0

0.002 0.08 0.080 0.09 0.002 0.011 0.08 0.46
(6.58) (4.47) (6.58) (1.04)

Panel E: Countercyclical Flotation Costs, λ2 > 0

0.001 0.05 0.021 0.06 0.001 0.016 0.07 0.52
(2.41) (2.83) (0.92) (2.49)
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proxy for financial constraints. For example, in the benchmark parametrization
(Panel A), the slope of the WW index in the joint regression with both indexes
is 0.108, more than seven times the magnitude for the KZ slope, 0.014. The
results from the four alternative parameterizations are largely similar.

C. Cyclical Properties of the Shadow Price of New Debt and Leverage Ratios

The population correlation between the shadow price of new debt averaged
across firms,

∑N
j=1 νjt, and the aggregate productivity, xt, is 0.20 in the bench-

mark parametrization. Allowing for low fixed equity flotation costs (λ0 = 0.02)
and countercyclical equity flotation costs (λ2 > 0) reduces this correlation to
0.02 and 0.06, respectively. Intuitively, both perturbations make new equity a
more affordable source of external finance in good times. This effect reduces the
importance of new debt when aggregate productivity is high, and subsequently
lowers the correlation between the shadow price of new debt and aggregate
productivity.

Although these results go in the same direction as the evidence of Gomes et al.
(2006), the shadow price in our simulations seems less procyclical than what
Gomes et al. document in the data. (In fact, the shadow price is largely acyclical
when λ0 = 0.02 or λ2 > 0.) However, the evidence of Gomes et al. hinges on their
modeling of financial constraints as dividend nonnegativity constraints, which
rule out all sources of external financing.7 It is conceivable that more realistic
financial constraints can overturn their conclusion on the cyclical properties of
the shadow price.

The aggregate market leverage, defined as
∑N

j=1 bjt/
∑N

j=1 vjt, is strongly
countercyclical in our model simulations. The population correlation between
aggregate market leverage and aggregate productivity is −0.70 in the bench-
mark parametrization. If we allow low fixed equity flotation costs, the corre-
lation is strengthened to −0.90. Allowing countercyclical equity flotation costs
also strengthens the correlation to −0.88. Intuitively, by making new equity
more affordable, especially in good times, both perturbations make the new eq-
uity more procyclical. The strong countercyclical property of the market lever-
age is consistent with the evidence documented by, for example, Korajczyk and
Levy (2003, Figure 1).

Intriguingly, the aggregate book leverage, defined as
∑N

j=1 bjt/
∑N

j=1 kjt, is
weakly procyclical in our simulations. The population correlation between ag-
gregate book leverage and aggregate productivity is 0.25 in the benchmark
parametrization. Allowing low or countercyclical equity flotation costs lowers
this correlation to be around 0.12. Intuitively, because the forward-looking mar-
ket value of equity incorporates the effect of countercyclical aggregate discount
rates embedded in the stochastic discount factor (equations (5) and (6)), the mar-
ket value of equity is more procyclical than the book value of equity (defined

7 A previous version of our paper verifies that the shadow price of new funds is strongly procycli-
cal in a model with dividend nonnegativity constraints and no debt (see Livdan et al. (2006)).
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as kjt − bjt) in the model economies. Accordingly, market leverage is strongly
countercyclical, even though book leverage is weakly procyclical.

D. The Leverage–Return Relation

The inflexibility mechanism underlying the positive relation between finan-
cial constraints and average returns also provides a new channel through which
leverage affects risk and expected returns.

The standard leverage hypothesis discussed in corporate finance textbooks
says that, all else equal, higher leverage means higher equity risk, which in turn
means higher average equity returns. For example, Grinblatt and Titman (2001,
pp. 381–384) argue that, when the debt is default free (as in our model), a firm’s
equity holders bear all the risk from movements in asset values. Specifically,
the equity beta is a linear function of market leverage: Grinblatt and Titman’s
equation (11.2b) says that βE = (1 + D/E)βA, where βE is equity beta, βA is asset
beta, and D/E is market leverage. Crucially, the textbook discussion assumes
that the asset beta is fixed. “If a firm’s total cash flows are independent of its
capital structure—that is, its mix of debt of equity financing—the total risk
borne by the aggregation of the investors of a firm, debt holders plus equity
holders, does not change when the firm changes its capital structure (Grinblatt
and Titman, p. 382).”

Our framework encompasses but goes beyond the standard leverage hypoth-
esis. The inflexibility mechanism allows the asset beta to covary positively with
market leverage. Intuitively, more levered firms are burdened with more debt,
and must repay existing debt before they can finance new investments. More
levered firms are more likely to face binding collateral constraints, are less flex-
ible in adjusting capital to smooth dividends, and are therefore riskier and earn
higher expected returns than less levered firms. With the notation of Grinblatt
and Titman (2001), the inflexibility mechanism says βE = (1 + D/E)β A(D/E),
where the asset beta is an increasing function of D/E. Accordingly, our model
predicts a convex relation between market leverage and expected returns,
whereas the standard leverage hypothesis predicts a linear relation.

Figure 4 plots the equity beta, βjt, against market leverage, bjt/vjt, under the
benchmark parametrization of our model. We let both variables vary with firm-
specific productivity, while fixing the aggregate productivity and capital stock
at their long-run average levels. The figure shows that the leverage–risk rela-
tion is largely convex, especially for firms with low firm-specific productivity.
Intuitively, the inflexibility from high financial leverage is more severe for less
productive firms because it interacts with other sources of inflexibility such
as asymmetric adjustment costs and operating leverage, which also are more
important for less productive firms.

The inflexibility mechanism is quantitatively important in driving the
leverage–return relation in our model economies. Using artificial panels we run
the Fama-MacBeth (1973) monthly cross-sectional regressions of stock returns
on market leverage, with and without controlling for the asset beta. We mea-
sure the asset beta as the levered equity beta, namely, βA

jt = (vjt/(bjt + vjt))βjt,
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βjt(k̄, bjt, zjt, x̄)
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Figure 4. The relation between equity risk and market leverage, the benchmark
parametrization. We plot risk (βjt) against market leverage (bjt/vjt), while fixing aggregate pro-
ductivity xt and capital stock kjt at their long-run average levels (x̄ and k̄, respectively). k̄, deter-
mined in simulations, is around one. The panel has a class of curves that correspond to different
values of zjt. The arrow indicates the direction along which zjt increases.

where βjt is the equity beta as defined in equation (21). Table VII shows that,
when used alone, market leverage significantly covaries with future stock re-
turns. If this effect is purely due to the standard leverage hypothesis (which
assumes the asset beta is fixed), then adding the asset beta into the regressions
should not affect the leverage slopes and their significance. We observe the ex-
act opposite. When bjt/vjt and βA

jt are jointly used, the leverage slopes become
smaller and insignificant across different parameterizations, but the slopes of
βA

jt are all significantly positive.

IV. Conclusion

Guided by neoclassical economic principles, we extend the investment-based
asset pricing framework à la Zhang (2005) to incorporate debt dynamics à la
Hennessy and Whited (2005). In our setting, facing aggregate and firm-specific
shocks and a stochastic discount factor, firms choose optimal investment and
next-period debt to maximize their equity value. Firms can retain earnings, bor-
row, and raise equity with flotation costs. When borrowing, firms face collateral
constraints on debt capacity. Quantitative results show that firms with smaller
capital stocks, lower firm-specific productivity, and higher current-period debt
are more financially constrained. More important, more constrained firms are
riskier and earn higher expected returns than less constrained firms. Intu-
itively, collateral constraints prevent firms from funding all desired invest-
ments, thereby reducing their flexibility in using the investment channel to
smooth dividend streams in the face of aggregate shocks.
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Table VII
Fama-MacBeth (1973) Monthly Cross-sectional Regressions

of Stock Returns on Market Leverage, with and without Controlling
for Asset Beta

Using simulated panels, we report the Fama-MacBeth (1973) monthly cross-sectional regressions
of the stock returns, rjt+1, on market leverage, bjt/vjt, with and without controlling for the asset
beta, βA

jt . βA
jt is defined as βjtvjt/(bjt + vjt), where βjt is the equity beta. Appendix B details the

numerical calculations of βjt. We simulate 100 artificial panels, each of which has 3,000 firms
and 480 monthly observations, and then report across-simulation average Fama-MacBeth slopes,
t-statistics (in parentheses), and average cross-sectional R2s. Panel A reports the quantitative
results from the benchmark parametrization with the parameter values in Table I. The remaining
panels report four comparative static experiments: the high liquidation costs case with s0 = 0.70
(Panel B), the low fixed flotation costs case with λ0 = 0.02 (Panel C), the countercyclical liquidation
costs case with s1 > 0 (Panel D), and the countercyclical flotation costs case with λ2 > 0 (Panel E).

bjt/vjt R2 bjt/vjt βA
jt R2

Panel A: Benchmark Parametrization

1.093 0.28 1.051 0.0049 0.39
(5.15) (1.26) (3.31)

Panel B: High Liquidation Costs, s0 = 0.70

3.617 0.14 2.456 0.0048 0.15
(7.22) (0.46) (10.29)

Panel C: Low Fixed Flotation Costs, λ2 = 0.02

3.490 0.09 3.083 0.0062 0.12
(4.37) (0.82) (10.40)

Panel D: Countercyclical Liquidation Costs, s1 > 0

3.827 0.14 2.079 0.0031 0.15
(6.58) (0.78) (9.60)

Panel E: Countercyclical Flotation Costs, λ2 > 0

3.062 0.08 1.032 0.0046 0.09
(8.55) (1.74) (9.63)

The interplay between asset pricing and corporate finance is likely to remain
a fertile ground for future research. An exciting direction is to incorporate de-
faultable bonds into the neoclassical investment framework. Doing so would
allow one to study the economic mechanism underlying the distress anomaly,
which is the anomalous negative relation between financial distress and av-
erage stock returns (e.g., Dichev (1998) and Campbell et al. (2008)). Moreover,
it seems important to address the distress anomaly together with the credit
spread puzzle (e.g., Huang and Huang (2003)). Bhamra, Kuehn, and Strebulaev
(2007), Chen (2007), and Chen, Collin-Dufresne, and Goldstein (2007) make
important progress on the credit spread puzzle. But a deeper puzzle arises.
Given that equity and bond are different contingent claims written on the same
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productive assets, why do more distressed firms earn lower average stock re-
turns but higher credit spreads than less distressed firms? The Lucas-Prescott
neoclassical paradigm has provided penetrating insights into important eco-
nomic questions before. This same paradigm is likely to offer a promising frame-
work for understanding the risk and returns of financially distressed firms.

Appendix A: The Shadow Price of New Debt

To characterize the shadow price of new debt given in equation (18), we first
specify the infinite-horizon Lagrangian formulation of the value function, de-
noted L, as follows:

Ljt = · · · + πjt + bj t+1

ιjt
− φ(ijt, kjt) − bjt − λ(ejt, kjt) − νjt(bj t+1 − s(1 − δ)k j t+1)

+ Et

[
mt+1

(
π j t+1 + bj t+2

ι j t+1
− φ(i j t+1, k j t+1) − bj t+1 − λ(e j t+1, k j t+1)

− ν j t+1(bj t+2 − s(1 − δ)k j t+2) + · · ·
)]

. (A1)

The Lagrangian Ljt is differentiable almost everywhere except when
π (kjt, zjt, xt) + bjt+1/ιjt − φ(ijt, kjt) − bjt = 0. Thus, we can characterize νjt analyt-
ically only in the case when ejt is strictly positive.

When ejt > 0, differentiating Ljt with respect to bjt+1 and recognizing

ejt = φ(ijt, kjt) + bjt − π (kjt, zjt, xt) − bj t+1

ιjt
, (A2)

we obtain

∂Ljt

∂bj t+1
= 1

ιjt
+ 1

ιjt
λe(ejt, kjt)1e

jt − νjt − Et
[
mt+1

(
1 + λe(e j t+1, k j t+1)1e

j t+1

)] = 0.

(A3)

Solving for νjt gives

νjt = 1
ιjt

[
1 + λe(ejt, kjt)1e

jt

] − Et
[
mt+1

(
1 + λe(e j t+1, k j t+1)1e

j t+1

)]
. (A4)

We can simplify equation (A4) further by noting that the collateral constraints
bind (νjt > 0) when bjt+1 > 0 and ιjt = rft = 1/Et[mt+1]. Equation (A4) then be-
comes equation (18) in the main text.

Appendix B: Solution Algorithm

We use the discrete-state-space value function iteration technique to solve the
dynamic equity value maximization problems of firms given by equation (17).
The state variables x and z are defined on continuous state spaces that can be
transformed into discrete state spaces using Rouwenhorst’s (1995) methods. We
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use five grid points for the x process and nine points for the z process. In all cases
our results are robust to finer grids. Once the discrete space is available, the
conditional expectation operator can be carried out as a matrix multiplication.

The capital stock in each period is constrained to be an element of the linear
finite time-invariant set K = {k1, . . . , kNK }, with a total of NK = 50 elements
(grid points). For any optimal capital stock on the grid, the finer grid used
for the interpolation consists of 1,000 evenly spaced points. The face value of
one-period debt, b, in each period is constrained to be an element of the linear
finite time-invariant set B = {b1, . . . , bNB }, centered around zero with a total of
NB = 2NK + 1 = 101 elements (grid points). The boundaries of the set, {b1, bNB },
are the same for any ki ∈ K, and are chosen to satisfy {b1, bNB } = ±s0(1 − δ)kNK .
For any optimal debt on the grid chosen from a first-pass optimization, the finer
grid used for the interpolation consists of 1,001 evenly spaced points.

We can formulate the dynamic value-maximization problem on the grid as
follows:

vn(ki, bj , zl , xm)

= max
{k′,b′}∈K′×B′

{
π (ki, zl , xm) + b′

ι(xm)
− bj − φ(k′, ki) − λ(e(ki, bj , zl , xm, k′, b′), k j )

+
9∑

l=1

5∑
m=1

ηe(γ0+γ1(xm−x̄))(xm−x ′)ṽn−1(k′, b′, zl ′ , xm′ )Qz (zl ′ | zl )Qx(xm′ | xm), (B1)

where ṽ incorporates the collateral constraint as ṽn = vn1{b′≤s(1−δ)k′} − e10(1 −
1{b′≤s(1−δ)k′}) and n indicates the number of value iterations. The four-
dimensional matrix vn : K × B × X × Z has 227,250 values as compared to
8,250 values used for Model 1. The algorithm can be described as follows:

1. Make a guess for vn−1(k, b, z, x) on the right-hand side of (B1). It is a 25 ×
51 × 9 × 5 object.

2. For each {k, b, z, x} ∈ K × B × X × Z, use local linear interpolation to con-
struct vn−1(k′, b′, z, x). Reshape the vn−1 into a traditionalK × B matrix and
again reshape after the interpolation to form a three-dimensional object
vn−1(k′, b′, z, x). Because K × B is not a square matrix, we must perform
interpolation along each dimension separately.

3. On the K′ × B′ grid construct 1{b′≤s(1−δ)k′}, which is a three-dimensional
object of zeros and ones, and use it to construct ṽn−1(k′, b′, z, x).

4. For each {k, b, z, x} ∈ K × B × X × Z, solve for the optimal {k∗(k, b, z, x),
b∗(k, b, z, x)} ∈ K′ × B′ from

{k′(k, b, z, x), b′(k, b, z, x)}

= arg max
{k′,b′}∈K′×B′

{
b′

ι(xm)
− φ(k′, ki) − λ(e(ki, bj , zl , xm, k′, b′), k j )

+
9∑

l=1

5∑
m=1

ηe(γ0+γ1(xm−x̄))(xm−x ′) Qz (zl ′ | zl )Qx(xm′ | xm)ṽn−1(k′, b′, zl ′ , xm′ )
}

(B2)



Financially Constrained Stock Returns 1859

by doing a simple grid search along k′ holding b′ fixed and then along b′

for each k∗.
5. Construct vn(k, b, z, x) from equation (B1).

Check for the conversion using maximum error criterion

max |vn(k, b, z, x) − vn−1(k, b, z, x)| < ε = 10−5. (B3)

6. If the conversion criterion is not satisfied, set vn(k, b, z, x) as a new guess
and repeat all of the steps above.

Once the algorithm converges, the expected return Et[rjt+1] = Et[vjt+1]/(vjt −
djt) can be calculated in a similar way. The equity beta βjt can be backed out from
equation (20) because the risk-free rate rft and the price of risk ζmt are known
functions of the pricing kernel. Piecewise linear interpolation is used exten-
sively to obtain firm value, optimal investment, and expected return, which do
not lie directly on the grid points.
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