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forecasts with Tobin’s q, operating cash flows, and change in return on equity as
predictors, an expected growth factor earns an average premium of 0.84% per
month (t¼ 10.27) in the 1967–2018 sample. The q5 model, which augments the Hou–
Xue–Zhang (2015, Rev. Finan. Stud., 28, 650–705) q-factor model with the expected
growth factor, shows strong explanatory power in the cross-section and outper-
forms the Fama–French (2018, J. Finan. Econom., 128, 234–252) six-factor model.
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1. Introduction

In the investment theory, firms with high expected investment growth should earn higher

expected returns than firms with low expected investment growth, holding current invest-

ment and expected profitability constant. Intuitively, if expected investment is high next

period, the present value of cash flows from next period onward must be high. Consisting

primarily of the present value of cash flows from next period onward, the benefit of invest-

ment this period must also be high. As such, if expected investment is high next period rela-

tive to current investment, the discount rate must be high to offset the high benefit of

investment this period to keep current investment low.

To test this prediction, we perform cross-sectional forecasting regressions of investment-

to-assets changes on current Tobin’s q, operating cash flows, and the change in return on

equity. Empirically, high cash flows and high changes in return on equity strongly predict

high investment-to-assets changes, and high Tobin’s q weakly predicts low investment-to-

assets changes. The expected 1-year-ahead investment-to-assets changes closely track the

average future realized 1-year-ahead investment-to-assets changes at the portfolio level.

More important, an independent 2�3 sort on size and expected 1-year-ahead

investment-to-assets changes yields an expected investment growth factor, with an average

premium of 0.84% per month (t¼10.27) from January 1967 to December 2018. The q-

factor model cannot explain this factor premium, with an alpha of 0.67% (t¼ 9.75). As

such, the expected growth factor represents a new dimension of the expected return vari-

ation that is largely missing from the q-factor model.

We augment the q-factor model with the expected growth factor to form the q5 model

and stress-test it along with other recent factor models. For testing deciles, we use a large

set of 150 significant anomalies with New York Stock Exchange (NYSE) breakpoints and

value-weighted returns from Hou, Xue, and Zhang (2019). For competing factor models,

we examine the q-factor model; the Fama–French (2015) five-factor model; the

Stambaugh–Yuan (2017) four-factor model; the Fama–French (2018) six-factor model; the

Fama–French alternative six-factor model with the operating profitability factor, robust-

minus-weak (RMW), replaced by a cash-based profitability factor, RMWc; the Barillas–

Shanken (2018) six-factor model; as well as the Daniel–Hirshleifer–Sun (2019) three-factor

model. The Barillas–Shanken specification includes the market factor, a size factor, the in-

vestment and return on equity (Roe) factors from the q-factor model, the Asness–Frazzini

(2013) monthly formed high-minus-low (HML) factor, and the momentum factor (up-

minus-down, UMD).
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Improving on the q-factor model substantially, the q5 model is the best performing

model among all the factor models. Across the 150 anomalies, the average magnitude of

the high-minus-low alphas is 0.19% per month, dropping from 0.28% in the q-factor

model. The number of significant high-minus-low alphas (jtj � 1:96) is 23 in the q5

model (6 with jtj � 3), dropping from 52 in the q-factor model (25 with jtj � 3). The num-

ber of rejections by the Gibbons, Ross, and Shanken (1989, hereafter GRS) test is also

smaller, 57 versus 101. The q5 model improves on the q-factor model across most anomaly

categories, especially in the investment and profitability categories.

The q-factor model already compares well with the Fama–French six-factor model. The

average magnitude of the high-minus-low alphas is 0.3% per month in the six-factor model

(0.28% in the q-factor model). The numbers of significant high-minus-low six-factor alphas

are 74 with jtj � 1:96 and 37 with jtj � 3. Both are higher than 52 and 25 in the q-factor

model, respectively. However, the number of rejections by the GRS test is 91, which is

lower than 101 in the q-factor model. Replacing RMW with RMWc improves the six-fac-

tor model’s performance. The average magnitude of the high-minus-low alphas falls to

0.27%. The number of significant high-minus-low alphas drops to 59 with jtj � 1:96 but is

still higher than 52 in the q-factor model. The number of rejections by the GRS test is 71.

Although substantially lower than 101 in the q-factor model, the number of rejections is

higher than 57 in the q5 model.

The Stambaugh–Yuan model is comparable with the q-factor model. The number of

high-minus-low alphas with jtj � 1:96 is 64, which is higher than 52 in the q-factor model.

However, the number of rejections by the GRS test is 87, which is lower than 101 in the q-

factor model. The Barillas–Shanken six-factor model performs poorly. The numbers of sig-

nificant high-minus-low alphas are 63 with jtj � 1:96 and 37 with jtj � 3, and the number

of rejections by the GRS test is 132 (out of 150 anomalies). Exacerbating the value-versus-

growth anomalies, the Daniel–Hirshleifer–Sun three-factor model also performs poorly,

with the second highest average magnitude of high-minus-low alphas, 0.37% per month,

and the highest mean absolute alpha, 0.14%.

Our work makes two major contributions. First, we bring expected growth to the fore

of empirical finance. This extension resolves many empirical difficulties of the q-factor

model, such as the anomalies based on R&D-to-market as well as operating and

discretionary accruals. Intuitively, R&D expenses depress current earnings but induce

future growth. Also, given the level of earnings, high accruals imply low cash flows

(internal funds available for investments) and, consequently, low expected growth.

Second, we conduct a large horse race of factor models. In contrast to small sets of

testing portfolios in prior studies, we increase the number of testing anomalies drastically

to 150. Barillas and Shanken (2018) conduct Bayesian tests with only eleven factors

and downplay the importance of testing assets. We show that inferences on relative

performance depend on the choice of testing assets. For instance, the presence of both

UMD and the monthly formed HML causes difficulties in explaining annually formed

value-versus-growth anomalies in the Barillas–Shanken model, difficulties that are

absent from the Fama–French five-factor model and the q-factor model. As such, it is

crucial to use a large set of testing assets to draw reliable inferences. Finally, our evidence

on how a given anomaly can be explained by different factor models is important in

its own right.

Unlike investment and profitability, expected growth is unobservable. We must take a

stand on its empirical specification, such as the list of predictors to be included. We
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acknowledge that the expected growth factor depends on the specification, and crucially,

on operating cash flows as a predictor. While it is intuitive why operating cash flows are

linked to expected growth, we emphasize a minimalistic interpretation of our evidence as

empirical dimension reduction. By more than halving the number of anomalies unexplained

by the q-factor model from 52 to 23, with only one extra factor, the q5 model makes further

progress toward the goal of dimension reduction (Cochrane, 2011).

George, Hwang, and Li (2018) show that the ratio of current price to 52-week high

price contains information about future growth, information that helps explain the accrual

and R&D-to-market anomalies. Li and Wang (2018) use earnings before extraordinary

items and depreciation but after interest and taxes, along with Tobin’s q and prior

11-month returns, to forecast capital expenditure growth. A rich accounting literature

motivates operating cash flows as a key predictor of future growth. Ball et al. (2016) show

that cash-based profitability outperforms earnings-based profitability in forecasting

returns. Lev (2001) and Lev and Gu (2016) argue that expensing R&D and other intangible

investments per current accounting standards make earnings a poor indicator of future

growth. Penman (2009) argues that the value of intangibles can be ascertained from varia-

bles, such as cash flows, from the income statement. Lev, Radhakrishnan, and Zhang

(2009) estimate firm-specific organizational capital from its impact on operating cash flows

via revenue growth and cost containment.

The rest of the article is organized as follows. Section 2 motivates the expected growth

factor. Section 3 forms cross-sectional growth forecasts and constructs the expected growth

factor. Section 4 stress-tests the factor models. Finally, Section 5 concludes. A separate

Supplementary Appendix details derivations, factor construction, and additional results.

2. Motivating Expected Growth

Hou, Xue, and Zhang (2015) underpin the q-factor model on a static investment frame-

work, which we extend to a dynamic setting to motivate the expected growth factor.

Section 2.1 describes the economic model. Section 2.2 presents its implications on cross-

sectional returns. Finally, Section 2.3 interprets the factors from the investment theory.

2.1 Conceptual Framework

Time is discrete, and the horizon infinite. The economy is populated by a representative

household and heterogeneous firms, indexed by i ¼ 1; 2; . . . ;N. The household maximizes

its expected utility, E0½
P1

t¼0 qtUðCtÞ�, in which q is time preference, Ct time t consumption,

and Uð�Þ the period utility function. Heterogeneous firms use capital and costlessly adjust-

able inputs to produce a homogeneous output, which can be consumed or invested. These

inputs are chosen each period to maximize operating profits (defined as revenue minus the

costs of these inputs). Taking operating profits as given, firms choose investment to maxi-

mize their market value of equity.

Let Pit ¼ XitAit be firm i’s time t operating profits, in which Ait is productive assets and

Xit stochastic return on assets. Xit is subject to aggregate and firm-specific shocks. Let Iit be

investment and d the depreciation rate of assets, then Aitþ1 ¼ Iit þ ð1� dÞAit. Changing the

scale of assets incurs adjustment costs, which are quadratic, ða=2ÞðIit=AitÞ2Ait, in which

a>0. For simplicity, we assume that the firm has no debt and pays no taxes. The net pay-

out of the firm is Dit ¼ XitAit � Iit � ða=2ÞðIit=AitÞ2Ait. If Dit � 0, the firm distributes it to

4 K. Hou et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/25/1/1/5727769 by guest on 18 February 2021

https://academic.oup.com/rof/article-lookup/doi/10.1093/rof/rfaa004#supplementary-data


shareholders. A negative Dit means that the firm raises an amount of external equity that

equals the absolute value of Dit.

The pricing implications of the household’s problem are well known. Let Pit be the ex-

dividend equity and Dit dividend of firm i. The consumption-based capital asset pricing

model (consumption CAPM) based on the first principle for consumption and portfolio

choice says that Et½Mtþ1RS
itþ1� ¼ 1, in which Mtþ1 � qU0ðCtþ1Þ=U0ðCtÞ is the stochastic dis-

count factor given by the household’s intertemporal marginal rate of substitution, and

RS
itþ1 � ðPitþ1 þDitþ1Þ=Pit is the stock return. Equivalently, Et½RS

itþ1� � Rft ¼ bM
it kMt, in

which Rft � 1=Et½Mtþ1� is the real interest rate, bM
it � �CovðRS

itþ1;Mtþ1Þ=VarðMtþ1Þ the

consumption beta, and kMt � VarðMtþ1Þ=Et½Mtþ1� the price of the consumption risk.

On the production side, taking Mtþ1 as given, firm i chooses the optimal investment

stream, fIisg1s¼0, to maximize the market equity, E0½
P1

s¼0 MisDis�. The first principle of in-

vestment says that Et½Mitþ1RI
itþ1� ¼ 1, in which the investment return, RI

itþ1, is:

RI
itþ1 ¼

Xitþ1 þ ða=2ÞðIitþ1=Aitþ1Þ2 þ ð1� dÞ½1þ aðIitþ1=Aitþ1Þ�
1þ aðIit=AitÞ

: (1)

Intuitively, the investment return is the marginal benefit of investment at time tþ 1 div-

ided by the marginal cost of investment at t. Et½Mtþ1RI
itþ1� ¼ 1 says that the marginal cost

equals the next period marginal benefit discounted to time t with the stochastic discount

factor. In the numerator, Xitþ1 is the marginal profits produced by an extra unit of assets,

ða=2ÞðIitþ1=Aitþ1Þ2 is the marginal reduction in adjustment costs, and the last term is the

marginal continuation value of the extra unit of assets, net of depreciation.

Cochrane (1991) uses no-arbitrage to argue, and Restoy and Rockinger (1994) prove

under constant returns to scale, that the stock return equals the investment return period by

period and state by state (Supplementary Appendix). Equation (1) says that the stock return

equals the next period marginal benefit of investment divided by the current marginal cost

of investment. Intuitively, the firm will keep investing until the marginal cost of investment,

which rises with investment, equals the present value of an extra unit of assets given by the

next period marginal benefit of investment discounted by the discount rate (the stock re-

turn). With debt and taxes, Liu, Whited, and Zhang (2009) show that the left-hand side of

Equation (1) becomes the weighted average cost of capital. As such, the equation is exactly

the net present value rule of capital budgeting in corporate finance.

2.2 Pricing Implications

In a static model, in which Iitþ1 ¼ 0, Equation (1) collapses to RS
itþ1 ¼ ðXitþ1 þ 1� dÞ=

ð1þ aIit=AitÞ. All else equal, low-investment stocks should earn higher expected returns

than high-investment stocks, and high expected profitability stocks should earn higher

expected returns than low expected profitability stocks. Intuitively, given expected profit-

ability, high costs of capital give rise to low net present values of new projects and low in-

vestment. Given investment, high expected profitability implies high discount rates, which

are necessary to offset the high expected profitability to induce low net present values of

new projects to keep investment low. Hou, Xue, and Zhang (2015) build on these insights

to form the investment and return on equity factors in the q-factor model.

In the multiperiod framework, Equation (1) says that holding investment and expected

profitability constant, the expected return also increases with the expected investment-to-

assets growth. The right-hand side of Equation (1) can be decomposed into a “dividend

An Augmented q-Factor Model 5

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/25/1/1/5727769 by guest on 18 February 2021

https://academic.oup.com/rof/article-lookup/doi/10.1093/rof/rfaa004#supplementary-data


yield” and a “capital gain.” The former is ½Xitþ1 þ ða=2ÞðIitþ1=Aitþ1Þ2�=ð1þ aIit=AitÞ,
which largely conforms to the static model, as the squared term, ðIitþ1=Aitþ1Þ2, is economic-

ally small. The “capital gain,” ð1� dÞð1þ aIitþ1=Aitþ1Þ=ð1þ aIit=AitÞ, is the growth of

marginal q (the market value of an extra unit of assets). Although the “capital gain”

involves the unobservable parameter, a, it is roughly proportional to the investment-to-

assets growth, ðIitþ1=Aitþ1Þ=ðIit=AitÞ (Cochrane, 1991). As such, the expected investment-

to-assets growth is the third “determinant” of the expected return.

The intuition is exactly analogous to the intuition underlying the positive profitability-

expected return relation. The term, 1þ aIitþ1=Aitþ1, is the marginal cost of investment next

period, which, per the first principle of investment, equals the marginal q next period (the

present value of cash flows in all future periods arising from one extra unit of assets next

period). The expected marginal q is then part of the expected marginal benefit of current in-

vestment. This term is absent from the static model that abstracts from growth in subse-

quent periods. As such, in the multiperiod world, if expected investment is high relative to

current investment, the discount rate must be high to offset the high expected marginal

benefit of current investment to keep current investment low.

2.3 Interpreting Factors: An Investment Perspective

Hou, Xue, and Zhang (2015) implement the static version of Equation (1) with the

Fama–French (1993) portfolio approach. Hou et al. construct factor mimicking port-

folios on investment and profitability and use the factors in the right-hand side of time-

series regressions. Analogously, we build an expected growth factor to form an expanded

factor model. The time-honored portfolio approach takes advantage of high-frequency

stock returns data, which are less subject to measurement errors than accounting varia-

bles. Structurally estimating Equation (1) directly as in Liu, Whited, and Zhang (2009)

involves specification errors in the marginal product of capital and the marginal cost of

investment, errors that are largely avoided in the factor approach.

Because the factor approach and structural estimation are two different ways of imple-

menting the investment theory, we interpret the q5 model as a linear approximation to the

firm-level cost of capital given by the nonlinear Equation (1). The equation says that the

expected return varies cross-sectionally, depending on firms’ investment, expected profit-

ability, and expected investment growth. The q5 model operationalizes this insight by form-

ing factors on the three “determinants.”

As two different ways of summarizing correlations between returns and characteris-

tics, factor models and cross-sectional regressions are largely equivalent on economic

grounds. If a characteristic is significant in cross-sectional regressions, its factor likely

earns a significant premium, and vice versa. Factor loadings are no more primitive than

characteristics, and vice versa, in explaining average returns (Lin and Zhang, 2013).

The return comovements among stocks with similar investment, profitability, and

expected growth, in the sense of Ross (1976), can arise from the comovements in their in-

vestment returns due to the similar characteristics. In particular, stocks with similar

investment-to-assets comove in their stock returns because their investment returns are

similar due to similar investment-to-assets in the denominator of Equation (1).

Analogously, stocks with similar profitability comove in their stock returns because their

investment returns are similar due to similar profitability in the numerator. Finally, stocks
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with similar expected investment growth comove in their stock returns because their invest-

ment returns are similar due to similar expected investment growth.1

In this sense, we echo Kozak, Nagel, and Santosh (2018) in that horse races between

covariances and characteristics cannot shed light on the efficient markets versus behavioral

finance debate. In their model, distorted beliefs drive the cross-section of expected returns,

but the cross-section can be captured empirically by a low-dimensional factor model. While

Kozak et al. emphasize that the evidence that a factor model explains returns is not incon-

sistent with mispricing, we emphasize that the evidence that characteristics explain returns

is not inconsistent with efficient markets.

More important, we interpret the q5 model as summarizing a large amount of the cross-

sectional variation in average returns (dimension reduction). This interpretation is distinct-

ively weaker than the risk factors interpretation of Fama and French (1993, 1996). We are

keenly aware that our evidence is not inconsistent with mispricing (Lin and Zhang, 2013).

For example, the stock market might not adequately value intangibles (Edmans, 2011), giv-

ing rise to a positive relation between operating cash flows and average subsequent returns.

Future work can shed further light on the economic driving forces behind the investment,

profitability, and expected growth factors.

3. Constructing the Expected Growth Factor

We perform cross-sectional growth forecasts in Section 3.1, form the expected growth fac-

tor in Section 3.2, and explore alternative growth specifications in Section 3.3.

3.1 Cross-Sectional Growth Forecasts

A technical issue arises in that firm-level investment is frequently negative, making the

growth rate of investment-to-assets ill-defined. As such, we forecast future investment-to-

assets changes. Forecasting changes captures the essence of the economic insight that all

else equal, high expected investment-to-assets relative to current investment-to-assets must

imply high discount rates. Our forecasting framework is monthly Fama–MacBeth (1973)

cross-sectional predictive regressions. At the beginning of each month t, we measure current

investment-to-assets as total assets (Compustat annual item AT) from the most recent fiscal

year ending at least four months ago minus the total assets from one year prior, scaled by

the 1-year-prior total assets. The left-hand side variables in the cross-sectional regressions

are investment-to-assets changes, denoted dsI/A, in which s ¼ 1; 2; and 3 years. We measure

d1I/A, d2I/A, and d3I/A as investment-to-assets from the 1st, 2nd, and 3rd fiscal year after

the most recent fiscal year end minus the current investment-to-assets, respectively. The

sample is from July 1963 to December 2018.

Following Cooper, Gulen, and Schill (2008), Hou, Xue, and Zhang (2015) measure

investment-to-assets as asset growth when constructing the investment factor in their q-

1 This comovement mechanism in the investment theory, which is based on the optimality condition

of an individual firm, is microeconomic in nature. In contrast, the consumption CAPM works

through a representative consumer, which gives rise to aggregate consumption growth as the key

factor. However, the aggregate nature of the factor is a direct consequence of the strong aggrega-

tion assumption embedded in the consumption CAPM. In all, characteristics-based factors are on

as solid theoretical grounds in the investment theory as aggregation consumption growth in the

consumption theory (Zhang, 2017).
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factor model. Because our conceptual framework is a dynamic extension of Hou et al.’s

static model, we adopt the same definition to be consistent. Fama and French (2015, 2018)

also use the same definition of investment. Cooper, Gulen, and Ion (2017) argue that the

asset growth premium is mostly driven by the growth in noncash current assets, as opposed

to long-term investment in fixed assets. However, the net present value intuition underlying

the investment factor applies not only to long-term investment in fixed assets but also to

short-term investment in working capital. In the presence of capital heterogeneity, asset

growth is a simple, convenient measure of the ratio of total investments to total assets, a

measure that summarizes the predictive power of investments on different capital goods.2

3.1.a. Predictors Based on a Priori Conceptual Arguments

Which variables should one use to forecast future growth? Our goal is a conceptually moti-

vated yet empirically validated specification for the expected investment-to-assets changes.

Keynes (1936) and Tobin (1969) argue that a firm should invest if its average q exceeds

one. Lucas and Prescott (1971) and Mussa (1977) show that optimality requires the

marginal cost of investment to equal marginal q. With quadratic adjustment costs, this

first-order condition can be rewritten as a linear regression of investment-to-assets on

(unobservable) marginal q. Hayashi (1982) shows that under constant returns to scale,

marginal q equals (observable) average q. As such, we include Tobin’s q as a predictor.

Cash flows typically have economically large and statistically significant slopes once

included in the investment-q regression. Fazzari, Hubbard, and Petersen (1988) show that

the cash flows effect on investment is especially strong for firms that are more financially

constrained. However, the interpretation of the cash flows effect is controversial.3 We re-

main agnostic about the exact interpretation of the cash flows effect, which is not directly

related to our asset pricing questions. As such, we also include cash flows on the right-hand

side of our forecasting regressions.

More important, a rich accounting literature motivates cash flows as a key predictor of

future growth. Ball et al. (2016) document that cash-based profitability outperforms

earnings-based profitability in forecasting returns. The evidence suggests that firms with

high accruals earn lower average returns because of their lower profitability on a cash basis.

We complement their interpretation by linking cash flows and accruals to expected growth.

Intuitively, high cash flows mean more internal funds available for investments, giving rise

to high expected growth and expected returns. In addition, high accruals mean low cash

flows, all else equal, giving rise to low expected growth and expected returns.

2 Wu, Zhang, and Zhang (2010) use the net present value intuition on working capital to explain the

accruals anomaly. Belo and Lin (2012) show that the relation between inventory and average

returns arises from a two-capital model. Goncalves, Xue, and Zhang (2019) show that a two-capital

model with working and physical capital goods does a good job in fitting the value, momentum,

asset growth, and profitability premiums simultaneously via structural estimation. Their main chal-

lenge is to explain the value premium, while simultaneously accounting for momentum. The asset

growth premium poses no particular difficulty.

3 Using measurement error-consistent estimation, Erickson and Whited (2000) find that cash flows

do not matter in the investment-q regression even for financially constrained firms and interpret

the cash flows effect as indicative of measurement errors in Tobin’s q. In addition, the investment-

cash flows relation can arise theoretically even without financial constraints (Gomes, 2001; Alti,

2003; Abel and Eberly, 2011). Finally, in a model with financial constraints, cash flows matter only if

one ignores marginal q (Gomes, 2001).
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A large national accounting literature shows that intangible investments have become

more important than tangible investments as a fraction of gross value added over the past

two decades (Corrado, Hulten, and Sichel, 2009). Haskel and Westlake (2018) describe the

broad-ranging consequences of the rise of the intangible economy. In financial accounting,

intangible investments such as R&D, advertising, supply chains, information technology,

and employee training are all immediately expensed, making earnings a poor indicator of

expected growth and the market value (Lev, 2001; Lev and Gu, 2016). Because their future

payoffs are uncertain, intangible assets fail to meet the criteria for asset recognition in the

balance sheet per accounting standards. However, intangibles have become arguably more

important than fixed assets in driving expected growth and the market value.

Penman (2009) argues that omitting intangibles from the balance sheet is not necessarily

deficient because the value of intangibles can be ascertained from the flow variables in the

income statement. For example, although missing from its balance sheet, the brand value of

the Coca-Cola Company directly impacts on its operating profits (revenue minus operating

costs). In particular, Lev, Radhakrishnan, and Zhang (2009) develop a firm-specific meas-

ure of organizational capital based on its impact on operating cash flows by increasing reve-

nues and containing costs. Lev et al. show that their measure correlates positively with

future growth in operating profits and sales. These powerful accounting insights motivate

operating cash flows as a key predictor of future growth.

Finally, both Tobin’s q and cash flows are slow-moving. To help capture the short-term

dynamics of expected growth, we also include the change in return on equity over the past

four quarters, denoted dRoe, as a predictor of growth. Intuitively, firms that experience re-

cent increases in profitability tend to raise future investments in the short term, and firms

that experience recent decreases in profitability tend to reduce future investments.4

3.1.b. Measuring Growth Predictors

Monthly returns are from the Center for Research in Security Prices (CRSP) and accounting

information from the Compustat Annual and Quarterly Fundamental Files. We require

CRSP share codes to be 10 or 11. Financial firms and firms with negative book equity are

excluded. Our measure of Tobin’s q is standard (Kaplan and Zingales, 1997). At the begin-

ning of each month t, current Tobin’s q is the market equity (price per share times the num-

ber of shares outstanding from CRSP) plus long-term debt (Compustat annual item DLTT)

and short-term debt (item DLC) scaled by book assets (item AT), all from the most recent

fiscal year ending at least four months ago. For firms with multiple share classes, we merge

the market equity for all classes.

We follow Ball et al. (2016) in measuring operating cash flows, denoted Cop. At the be-

ginning of each month t, we measure current Cop as total revenue (Compustat annual item

REVT) minus cost of goods sold (item COGS), minus selling, general, and administrative

4 Novy-Marx (2015) argues that the investment theory cannot explain momentum measured as dRoe.

However, Liu, Whited, and Zhang (2009) show that firms that experience recently positive earnings

shocks have higher average future investment growth than firms that experience recently negative

earnings shocks. Liu and Zhang (2014) show that this investment growth spread is temporary, con-

verging within 12 months, and helps explain the short duration of momentum. Goncalves, Xue, and

Zhang (2019) show that a detailed treatment of aggregation and capital heterogeneity enables the

investment theory to explain value and momentum simultaneously. We instead form cross-

sectional growth forecasts to build the expected growth factor.

An Augmented q-Factor Model 9
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expenses (item XSGA), plus research and development expenditures (item XRD, zero if

missing), minus change in accounts receivable (item RECT), minus change in inventory

(item INVT), minus change in prepaid expenses (item XPP), plus change in deferred rev-

enue (item DRC plus item DRLT), plus change in trade accounts payable (item AP), and

plus change in accrued expenses (item XACC), scaled by book assets, all from the fiscal

year ending at least four months ago. Missing annual changes are set to zero.

The change in return on equity, dRoe, is Roe minus the 4-quarter-lagged Roe. Roe is in-

come before extraordinary items (Compustat quarterly item IBQ) scaled by the 1-quarter-

lagged book equity. We compute dRoe with earnings from the most recent announcement

dates (item RDQ), and if not available, from the fiscal quarter ending at least four months

ago (Hou, Xue, and Zhang, 2019). Finally, missing dRoe values are set to zero in the cross-

sectional forecasting regressions.

3.1.c. Cross-Sectional Forecasting Regressions

Panel A of Table I shows monthly cross-sectional regressions of future investment-to-assets

changes on the log of Tobin’s q, logðqÞ; cash flows, Cop; and the change in return on

equity, dRoe. We winsorize both the left- and right-hand side variables each month at the

1–99% level. To control for the impact of microcaps, we use weighted least squares with

the market equity as the weights.

At the beginning of each month t, we construct expected s-year-ahead investment-to-

assets changes, denoted Et[d
sI/A], in which s ¼ 1;2; and 3 years, by combining most recent

winsorized predictors with the average slopes estimated from the prior 120-month rolling

window (30 months minimum). The most recent predictors, logðqÞ and Cop, in Et½dsI=A�
are from the most recent fiscal year ending at least four months ago as of month t, and

dRoe is computed using the latest announced quarterly earnings, and if not available, the

earnings from the most recent fiscal quarter ending at least four months ago.

The average slopes in calculating Et½dsI=A� are estimated from the prior rolling window

regressions, in which dsI/A is from the most recent fiscal year ending at least four months

ago as of month t, and the regressors are further lagged accordingly. For instance, for s¼ 1,

the regressors in the latest monthly cross-sectional regression are further lagged by

12 months relative to the most recent predictors that we combine with the slopes in calcu-

lating Et½d1I=A�. Finally, we report the time-series averages of cross-sectional Pearson and

rank correlations between Et½dsI/A� calculated at the beginning of month t and the subse-

quent s-year-ahead investment-to-assets changes after month t.

Panel A shows that Tobin’s q alone is a weak predictor of investment-to-assets changes.

At the 1-year horizon, the slope, 0.02, is small, albeit significant. The R2 is only 1%, which

is not surprising when forecasting changes. The out-of-sample correlations are also close to

zero.5 Operating cash flows, Cop, perform better than Tobin’s q. When used alone, Cop

has significant slopes that range from 0.42 to 0.46 (t-values above 10). The out-of-sample

5 Forecasting growth rates often yields low explanatory power. For example, Chan, Karceski, and

Lakonishok (2003) document a low R2 for earnings growth, even with a myriad of predictors, includ-

ing valuation ratios. Also, in untabulated results, we show that the time-series average of the con-

temporaneous cross-sectional Pearson correlation between log ðqÞ and investment-to-assets is

0.23, and the rank correlation 0.3. The investment theory predicts a tight relation of Tobin’s q with

the current investment level, but not necessarily with future investment-to-assets changes.

10 K. Hou et al.
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Table I. Monthly cross-sectional regressions of future investment-to-assets changes (July 1963

to December 2018)

For each month, we perform cross-sectional regressions of future s-year-ahead investment-to-

assets changes, dsI/A, in which s ¼ 1; 2; 3, on the log of Tobin’s q, logðqÞ; cash flows, Cop;

the change in return on equity, dRoe; as well as on all the three regressors. Current investment-

to-assets is from the most recent fiscal year ending at least four months ago, and dsI/A is

investment-to-assets from the subsequent s-year-ahead fiscal year end minus the current in-

vestment-to-assets. The cross-sectional regressions are estimated via weighted least squares

with the market equity as the weights. We winsorize each variable each month at the 1–99%

level. We report the average slopes, the t-values adjusted for heteroskedasticity and autocorre-

lations (in parentheses), and goodness-of-fit coefficients, R2. At the beginning of each month t,

we calculate the expected I/A changes, Et ½dsI=A�, by combining the most recent winsorized pre-

dictors with the average cross-sectional slopes. The most recent predictors, logðqÞ and Cop, are

from the most recent fiscal year ending at least four months ago as of month t, and dRoe is

based on the latest announced earnings, and if not available, the earnings from the most recent

fiscal quarter ending at least four months ago. The average slopes in calculating Et ½dsI=A� are

from the prior 120-month rolling window (30 months minimum), in which the dependent vari-

able, dsI/A, uses data from the fiscal year ending at least four months ago as of month t, and the

regressors are further lagged accordingly. For instance, for s¼ 1, the regressors used in the lat-

est monthly cross-sectional regression are further lagged by 12 months relative to the most re-

cent predictors used in calculating Et ½d1I=A�. We report time-series averages of cross-sectional

Pearson and rank correlations between Et ½dsI=A� calculated at the beginning of month t and the

realized s-year-ahead investment-to-assets changes. The p-values testing that a given correl-

ation is zero are in square brackets.

Panel A: logðqÞ Panel B: Cop

s logðqÞ R2 Pearson Rank Cop R2 Pearson Rank

1 0.021 0.01 0.016 0.004 0.418 0.03 0.138 0.176

(5.12) [0.00] [0.33] (13.38) [0.00] [0.00]

2 –0.005 0.01 0.027 0.037 0.457 0.04 0.127 0.153

(–0.95) [0.00] [0.00] (12.09) [0.00] [0.00]

3 –0.019 0.01 0.085 0.098 0.436 0.04 0.115 0.131

(–3.81) [0.00] [0.00] (10.49) [0.00] [0.00]

Panel C: dRoe Panel D: logðqÞ, Cop, and dRoe

s dRoe R2 Pearson Rank logðqÞ Cop dRoe R2 Pearson Rank

1 0.795 0.02 0.068 0.131 –0.029 0.516 0.771 0.06 0.135 0.208

(7.85) [0.00] [0.00] (–5.63) (12.75) (7.62) [0.00] [0.00]

2 0.949 0.02 0.068 0.155 –0.073 0.699 0.907 0.09 0.148 0.220

(9.82) [0.00] [0.00] (–9.76) (12.34) (10.07) [0.00] [0.00]

3 0.746 0.02 0.055 0.130 –0.093 0.745 0.717 0.09 0.154 0.218

(8.50) [0.00] [0.00] (–12.39) (12.17) (8.60) [0.00] [0.00]
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correlations are much higher than those with Tobin’s q. The change in return on equity,

dRoe, performs better than Tobin’s q, but not cash flows. When used alone, the dRoe

slopes range from 0.75 to 0.95, with t-values above 7.5.

In our benchmark specification with logðqÞ, Cop, and dRoe together, the slopes are

similar to those from univariate regressions. At the 1-year horizon, for instance, the Cop

slope remains large and significant, 0.52, the logðqÞ slope becomes weakly negative, –0.03,

and the dRoe slope stays significant at 0.77. The in-sample R2 increases to 6.4%. The out-

of-sample Pearson and rank correlations, which are important for constructing the

expected growth factor, are 0.14 and 0.21, respectively. Both are highly significant. At the

3-year horizon, the logðqÞ and Cop slopes both increase in magnitude to –0.09 and 0.75, re-

spectively, but the dRoe slope falls slightly to 0.72. The in-sample R2 rises to 9%, and the

out-of-sample correlations rise slightly to 0.15 and 0.22, respectively.

3.2 The Expected Growth Premium

Armed with the cross-sectional forecasts of investment-to-assets changes, we form the

expected growth deciles, construct an expected growth factor, and augment the q-factor

model with the new factor to form the q5 model.

3.2.a. Deciles

At the beginning of each month t, we form deciles on the expected investment-to-assets

changes, Et½dsI=A�, with s ¼ 1;2, and 3 years. As in Table I, we calculate Et½dsI=A� by com-

bining most recent winsorized predictors with the average slopes from the prior 120-month

rolling window (30 months minimum). We sort all stocks into deciles on the NYSE break-

points of the ranked Et½dsI=A� values and calculate the value-weighted decile returns for the

current month t. The deciles are rebalanced at the beginning of month tþ 1.

Panel A of Table II shows a reliable expected growth premium. The high-minus-low

Et½d1I=A� decile earns on average 1.07% per month (t¼6.48). The high-minus-low

Et½d2I=A� and Et½d3I=A� deciles earn on average about 1.18%, with t-values above 7. From

Panel B, the expected growth premium cannot be explained by the q-factor model. The

high-minus-low alphas are 0.86, 0.93, and 1.01% (t ¼ 6:19; 5:53, and 6.01) over the 1-, 2-,

and 3-year horizons, respectively. The mean absolute alphas across the deciles are 0.23,

0.21, and 0.24%, respectively, and the q-factor model is strongly rejected by the GRS test

on the null that the alphas are jointly zero across a given set of deciles (untabulated).

Panel C reports the expected investment-to-assets changes, and Panel D the average sub-

sequently realized changes across the Et½dsI=A� deciles. Both the expected and realized

changes are value-weighted at the portfolio level with the market equity as the weights.

Reassuringly, the expected changes track the subsequently realized changes closely. At the

1-year horizon, the expected changes rise monotonically from –15.21% per annum for

Decile 1 to 7.65% for Decile 10, and the average realized changes from –16.69% for Decile

1 to 5.96% for Decile 10. As such, our Et½dsI=A� proxy is close to an unbiased estimator at

the portfolio level, which diversifies away firm-level estimation errors. The time-series aver-

age of cross-sectional correlations between the expected and realized changes is 0.64, which

is highly significant (untabulated). The evidence for the 2- and 3-year horizons is largely

similar, with correlations of 0.7 and 0.67, respectively. As such, our empirical specification

for the expected investment-to-assets changes seems effective.
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Table II. Properties of the expected growth deciles (January 1967 to December 2018)

We use the log of Tobin’s q, logðqÞ; cash flow, Cop; and the change in return on equity, dRoe,

to form the expected investment-to-assets changes, Et ½dsI=A�, with s ranging from one to three

years. At the beginning of each month t, we calculate Et ½dsI=A� by combining the three most

recent predictors (winsorized at the 1–99% level) with the average slopes. The most recent pre-

dictors, logðqÞ and Cop, are from the most recent fiscal year ending at least as well as months

ago as of month t, and dRoe uses the latest announced earnings, and if not available, the earn-

ings from the most recent fiscal quarter ending at least four months ago. The average slopes in

calculating Et ½dsI=A� are from the prior 120-month rolling window (30 months minimum), in

which the dependent variable, dsI/A, uses data from the fiscal year ending at least four months

ago as of month t, and the regressors are further lagged accordingly. For instance, for s¼ 1, the

regressors used in the latest monthly cross-sectional regression are further lagged by

12 months relative to the most recent predictors used in calculating Et ½d1I=A�. Cross-sectional

regressions are estimated via weighted least squares with the market equity as weights. At the

beginning of each month t, we sort all stocks into deciles based on the NYSE breakpoints of the

ranked Et ½dsI=A� values, and compute value-weighted decile returns for the current month t.

The deciles are rebalanced at the beginning of month tþ 1. For each decile and the high-minus-

low decile, we report the average excess return, �R , the q-factor alpha, aq, the expected invest-

ment-to-assets changes, Et ½dsI=A�, and the average future realized changes, dsI=A, as well as

their heteroskedasticity-and-autocorrelation-adjusted t-statistics (beneath the corresponding

estimates). Et ½dsI=A� and dsI=A are value-weighted.

s Low 2 3 4 5 6 7 8 9 High H–L

Panel A: Average excess returns, �R

1 �R –0.12 0.20 0.28 0.42 0.45 0.49 0.56 0.64 0.77 0.95 1.07

t –0.40 0.84 1.21 2.00 2.36 2.61 3.00 3.54 4.17 4.69 6.48

2 �R –0.09 0.23 0.23 0.37 0.44 0.60 0.62 0.80 0.70 1.08 1.17

t –0.33 0.98 1.07 1.79 2.29 3.36 3.50 4.23 3.61 5.10 7.14

3 �R –0.08 0.20 0.30 0.39 0.53 0.51 0.74 0.68 0.81 1.11 1.19

t –0.29 0.90 1.41 1.92 2.82 2.79 3.86 3.39 4.19 5.20 7.13

Panel B: The q-factor alphas, aq

1 aq –0.42 –0.35 –0.23 –0.14 –0.15 –0.02 0.08 0.17 0.29 0.43 0.86

t –4.09 –3.45 –2.28 –1.58 –1.80 –0.28 1.05 1.64 3.54 4.31 6.19

2 aq –0.36 –0.19 –0.17 –0.19 –0.13 0.06 0.01 0.17 0.29 0.58 0.93

t –3.78 –2.43 –1.81 –2.88 –1.81 0.68 0.19 1.88 3.02 4.16 5.53

3 aq –0.40 –0.16 –0.21 –0.23 –0.02 –0.11 0.17 0.19 0.30 0.61 1.01

t –4.14 –1.84 –2.49 –3.00 –0.21 –1.21 1.88 1.98 3.02 4.40 6.01

Panel C: The expected growth, Et ½dsI=A�

1 Et½dsI=A� –15.21 –7.67 –5.61 –4.20 –3.03 –1.97 –0.86 0.47 2.52 7.65 22.87

t –36.75 –31.37 –25.19 –20.56 –15.96 –11.01 –5.08 3.01 16.53 37.98 45.21

2 Et½dsI=A� –19.87 –10.18 –7.38 –5.52 –4.03 –2.67 –1.23 0.51 3.13 9.44 29.31

t –34.26 –26.34 –21.16 –16.88 –12.97 –8.94 –4.22 1.81 11.30 29.57 45.51

3 Et½dsI=A� –20.42 –11.16 –8.26 –6.33 –4.75 –3.31 –1.77 0.03 2.66 9.06 29.48

t –30.59 –23.07 –18.58 –15.04 –11.80 –8.51 –4.70 0.10 7.67 24.92 44.17

(continued)
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3.2.b. A Common Factor

In view of the expected growth premium largely unexplained by the q-factor model, we

form an expected growth factor, denoted REg. Following the standard factor construction

procedure per Fama and French (1993), we form REg from an independent 2� 3 sort on the

market equity and the expected 1-year-ahead investment-to-assets changes, Et½d1I=A�.
At the beginning of each month t, we use the beginning-of-month median NYSE market

equity to split stocks into two groups, small and big. Independently, we split all stocks into

three groups, low, medium, and high, based on the NYSE breakpoints for the low 30%,

middle 40%, and high 30% of the ranked Et½d1I=A� values. Taking the intersection of the

two sizes and three Et½d1I=A� groups, we form six benchmark portfolios. Monthly value-

weighted portfolio returns are calculated for the current month t, and the portfolios are

rebalanced at the beginning of month tþ1. Designed to mimic the common variation

related to Et½d1I=A�, the expected growth factor, REg, is the difference (high-minus-low),

each month, between the simple average of the returns on the two high Et½d1I=A� portfolios

and the simple average of the returns on the two low Et½d1I=A� portfolios.

Panel A of Table III shows the basic properties of the expected growth factor, REg. In

the 1967–2018 sample, its average return is 0.84% per month (t¼10.27). The t-value

clears the high hurdle of three that adjusts for multiple testing per Harvey, Liu, and Zhu

(2016). The q-factor alpha of REg is large, 0.67% (t¼9.75). Its investment and return on

equity factor loadings are both significantly positive, 0.21 and 0.3 (t¼4.86 and 9.13), re-

spectively, yet still leave the bulk of the average return unexplained. As such, the expected

growth factor captures a new dimension of the expected return variation missed by the q-

factor model. In untabulated results, the Fama–French (2018) six-factor alpha of the

expected growth factor is 0.71% (t¼ 11.71). Based on the six-factor model, Chordia,

Goyal, and Saretto (2019) propose a t-value cutoff of 3.84 for alphas to control for multiple

testing. Our t-value of 11.71 far exceeds this high hurdle.

The subsequent five regressions in Panel A identify the sources behind the expected

growth premium. To this end, we form factors on logðqÞ, Cop, and dRoe, by interacting

each of them separately with the market equity in 2� 3 sorts. Cop is the most important

component of the expected growth premium. Augmenting the q-factor model with the Cop

factor reduces the alpha of REg from 0.67% per month (t¼ 9.75) to 0.37% (t¼ 6.35). dRoe

plays a more limited role. Adding the dRoe factor to the q-factor model reduces the alpha

only slightly to 0.63% (t¼8.56). Tobin’s q is negligible on its own but more effective when

Table II. Continued

s Low 2 3 4 5 6 7 8 9 High H–L

Panel D: Average future realized growth, dsI=A

1 dsI=A –16.69 –12.30 –4.11 –3.56 –1.10 –0.43 –0.32 0.64 1.57 5.96 22.65

t –11.71 –8.36 –7.15 –5.22 –2.24 –0.90 –0.71 1.18 3.59 9.07 14.72

2 dsI=A –23.68 –12.64 –6.45 –3.74 –2.25 –1.44 0.10 1.47 1.25 3.14 26.82

t –14.38 –12.42 –8.44 –4.60 –3.86 –2.43 0.22 2.72 2.33 4.93 16.10

3 dsI=A –23.10 –12.91 –7.00 –3.20 –2.29 –2.90 –1.44 –0.50 0.46 1.31 24.41

t –14.70 –13.87 –9.51 –4.72 –3.79 –4.68 –2.96 –0.91 0.76 1.85 15.18
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Table III. Properties of the expected growth factor, REg (January 1967 to December 2018)

The log of Tobin’s q, logðqÞ; cash flows, Cop; and change in return on equity, dRoe, are used to

form the expected 1-year-ahead investment-to-assets changes, Et ½d1I=A�. At the beginning of

month t, Et ½d1I=A� combines the most recent predictors (winsorized at the 1–99% level) with

average Fama–MacBeth slopes. The most recent logðqÞ and Cop are from the most recent fiscal

year ending at least four months ago as of month t, and dRoe uses the latest announced earn-

ings, and if not available, the earnings from the most recent fiscal quarter ending at least four

months ago. The average slopes in calculating Et ½dsI=A� are from the prior 120-month rolling

window (30 months minimum), in which the dependent variable, d1I/A, uses data from the fiscal

year ending at least four months ago as of month t, and the regressors are further lagged. We

estimate the regressions via weighted least squares with the market equity as weights. At the

beginning of each month t, we use the median NYSE market equity to split stocks into two

groups, small and big, based on the beginning-of-month market equity. Independently, we sort

all stocks into three Et ½d1I=A� groups, low, median, and high, based on the NYSE breakpoints

for the low 30%, middle 40%, and high 30% of its ranked values at the beginning of month t.

Taking the intersections, we form six portfolios. We calculate value-weighted portfolio returns

for the current month t, and rebalance the portfolios at the beginning of month tþ 1. The

expected growth factor, REg, is the difference (high-minus-low), each month, between the sim-

ple average of the returns on the two high Et ½d1I=A� portfolios and the simple average of the

returns on the two low Et ½d1I=A� portfolios. Panel A reports for the expected growth factor, REg,

its average return, �R Eg, and alphas, factor loadings, and R2 from the q-factor model, and the q-

factor model augmented with a logðqÞ factor, a Cop factor, and a dRoe factor, separately or

jointly. The t-values adjusted for heteroskedasticity and autocorrelations are in parentheses. To

form the logðqÞ and Cop factors, we use independent annual sorts (with size) at the end of June

of year t, with NYSE breakpoints for the low 30%, middle 40%, and high 30% of the ranked val-

ues from the fiscal year ending in calendar year t – 1. To form the dRoe factor, we use independ-

ent monthly sorts (with size) at the beginning of each month t, with NYSE breakpoints for the

low 30%, middle 40%, and high 30% of the ranked values of dRoe. dRoe is calculated with the

latest announced earnings, and if not available, with the earnings from the fiscal quarter ending

at least four months ago. Panel B reports the correlations of the expected growth factor, REg,

with the q-factors, as well as the logðqÞ, Cop, and dRoe factors.

Panel A: Properties of the expected growth factor, REg

�REg a bMkt bMe bI=A bRoe R2

0.84 0.67 –0.11 –0.09 0.21 0.30 0.44

(10.27) (9.75) (–6.38) (–3.56) (4.86) (9.13)

a bMkt bMe bI=A bRoe b logðqÞ R2

0.67 –0.11 –0.09 0.23 0.30 –0.02 0.44

(9.80) (–6.40) (–3.61) (4.72) (8.83) (–0.48)

a bMkt bMe bI=A bRoe bCop R2

0.37 –0.02 –0.02 0.31 0.14 0.60 0.65

(6.35) (–1.66) (–0.54) (9.51) (4.37) (10.63)

(continued)
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used together with Cop and dRoe. Adding the logðqÞ, Cop, and dRoe factors together to

the q-factor model yields an alpha of 0.25% (t¼ 4.04), which is lower than 0.33% (t¼ 5.2)

when adding only the Cop and dRoe factors.6

Panel B shows that the expected growth factor has positive correlations of 0.34 and

0.51 with the investment and Roe factors but negative correlations of –0.46 and –0.37 with

the market and size factors in the q-factor model. All are significant from zero.

3.2.c. The q5 Model

We augment the q-factor model with the expected growth factor to form the q5 model. The

expected excess return of an asset, denoted E½Ri � Rf �, is described by the loadings of its

returns to five factors, including the market factor, RMkt; the size factor, RMe; the invest-

ment factor, RI=A; the return on equity factor, RRoe; and the expected growth factor, REg.

The first four factors are identical to those in the q-factor model. Formally,

E½Ri � Rf � ¼ bi
Mkt E½RMkt� þ bi

Me E½RMe� þ bi
I=A E½RI=A� þ bi

Roe E½RRoe� þ bi
Eg E½REg�; (2)

in which E½RMkt�;E½RMe�;E½RI=A�; E½RRoe�, and E½REg� are the expected factor premiums,

and bi
Mkt; bi

Me; bi
I=A; bi

Roe, and bi
Eg are their factor loadings, respectively.

Table III. Continued

Panel A: Properties of the expected growth factor, REg

a bMkt bMe bI=A bRoe bdRoe R2

0.63 –0.11 –0.10 0.18 0.23 0.16 0.46

(8.56) (–6.62) (–3.93) (3.57) (5.00) (2.41)

a bMkt bMe bI=A bRoe bCop bdRoe R2

0.33 –0.03 –0.02 0.28 0.07 0.60 0.15 0.66

(5.20) (–1.88) (–0.72) (6.73) (1.72) (10.02) (2.33)

a bMkt bMe bI=A bRoe b logðqÞ bCop bdRoe R2

0.25 –0.01 –0.01 0.06 0.04 0.22 0.72 0.21 0.70

(4.04) (–0.86) (–0.35) (1.31) (1.27) (8.36) (14.61) (3.19)

Panel B: Correlations of REg with other factors

RMkt RMe RI=A RRoe R logðqÞ RCop RdRoe

–0.458 –0.367 0.342 0.506 0.188 0.710 0.423

6 We form the log ðqÞ and Cop factors with annual sorts to facilitate comparison with the existing lit-

erature (Ball et al. 2016). In untabulated results, we have also examined the log ðqÞ and Cop factors

with monthly sorts that are analogous to our construction of the expected growth factor. Tobin’s q

continues to play a negligible role when used alone. Adding the monthly sorted Cop factor into the

q-factor model yields an alpha of 0.27% (t¼ 5.16) for the expected growth factor, and adding all

three monthly formed factors reduces the alpha further to 0.16% (t¼ 2.9).
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Not surprisingly, the expected growth factor explains the deciles sorted on the expected

1-year-ahead investment-to-assets changes, Et½d1I=A� (Supplementary Appendix). The

high-minus-low decile earns a q5 alpha of only –0.15% per month (t ¼ �1:5) due to a large

expected growth factor loading of 1.5 (t¼26.75). The mean absolute alpha is only 0.07%,

and the GRS test cannot reject the q5 model (p¼ 0.13). Reassuringly, the expected growth

factor also explains the Et½d2I=A� and Et½d3I=A� deciles. The high-minus-low alphas are

only –0.05% (t ¼ �0:43) and 0.05 (t¼ 0.38), the mean absolute alphas 0.07% and 0.09%,

and the GRS p-values 0.49 and 0.12, respectively.

3.3 Limitations

Unlike investment and profitability, expected growth is unobservable. Estimating expected

growth requires us to take a stand on its specification and the list of predictors to be

included. While the t-value of the expected growth factor far exceeds the existing hurdles of

multiple testing, the factor depends on its specification, and crucially on operating cash

flows, Cop, as a predictor of future growth.7 While we do provide strong intuition on why

cash flows should be linked to future growth (and reliable evidence on this linkage), we em-

phasize a minimalistic interpretation of our extensive evidence on factor models as dimen-

sion reduction. In particular, among the 52 (out of 150) anomalies that the q-factor model

cannot explain, cash flows seem to be an important, missing factor.

To what extent do our cross-sectional growth forecasts add to a mechanical combin-

ation of the three predictors? We form an alternative expected growth factor on the com-

posite score that equal-weights a stock’s percentile rankings of log(q), Cop, and dRoe (each

realigned to yield a positive slope in forecasting returns). The alternative expected growth

factor earns on average 0.86% per month (t¼9.37), and its q-factor alpha is 0.45%

(t¼6.33) (Supplementary Appendix). The correlation between the alternative and bench-

mark expected growth factors is far from perfect, 0.63. The benchmark q5 model subsumes

the alternative expected growth factor, with an alpha of 0.12% (t¼ 1.75), but the alterna-

tive q5 model cannot subsume the benchmark expected growth factor, with an alpha of

0.48% (t¼ 6.4). As such, our growth forecasts capture valuable pricing information beyond

the simple, mechanical rule of equal-weighting.

The expected growth factor is robust to changes in the left-hand side variable of the

cross-sectional forecasting regressions. As noted, because firm-level investment-to-assets

(I/A, net asset growth) is frequently negative, we forecast future investment-to-assets

changes, dsI/A, for s ¼ 1;2, and 3 years. We have explored the alternative of forecasting the

log growth rate of gross asset growth, denoted dlogs(1þI/A). The results are largely similar

(Supplementary Appendix). In particular, the alternative expected growth factor earns on

average 0.84% per month (t¼10.24), with a q-factor alpha of 0.67% (t¼ 9.62). Its correl-

ation with the benchmark expected growth factor is 0.99.

The expected growth factor is also relatively robust to changes in the right-hand

side variables. We start by adding past investment growth to the right-hand side. Adding

1-year-lagged investment-to-assets changes, d�1I/A, does not affect the results

(Supplementary Appendix). Its slope in the forecasting regression of d1I/A is weakly

7 This aspect is not that different from the influential stock market predictability literature, in which

the predictive results depend on the predictors employed (Welch and Goyal, 2008), as well as the

conditional asset pricing literature, in which the pricing results depend on the variables in the con-

ditional beta specifications (Ghysels, 1998).
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negative. The resulting expected growth factor earns on average 0.82% per month

(t¼10.35), with a q-factor alpha of 0.71% (t¼ 9.38). Adding 2-quarter-lagged year-to-

year investment-to-assets changes, d�1/2I/A, yields a negative slope of –0.15 in the forecast-

ing regression, and the expected growth premium falls slightly to 0.76% (t¼10.43), with a

q-factor alpha of 0.64% (t¼ 9.93). Adding 1-quarter-lagged year-to-year investment-to-

assets changes, d�1/4I/A, raises (in magnitude) the slope further to –0.22, and the expected

growth premium still remains at 0.71% (t¼ 9.93), with a q-factor alpha of 0.61%

(t¼8.73). However, if we include current investment-to-assets changes, d0I/A, the slope

rises to –0.45, and the expected growth premium falls to 0.47% (t¼7.02), with a q-factor

alpha of 0.44% (t¼5.92). The large slope is driven by a mechanical relation in the regres-

sion because current investment-to-assets appears on both left- and right-hand sides.8

Barro (1990) and Morck, Shleifer, and Vishny (1990) propose two alternative invest-

ment growth specifications. Barro uses lagged investment growth, 1-year ex-dividend stock

market return, the first difference of the ratio of after-tax corporate profits to sales, the log

growth of Tobin’s q, and the growth of gross national product to forecast aggregate invest-

ment growth. Morck et al. regress firm-level capital expenditure growth contemporaneous-

ly on the growth of earnings before depreciation, sales growth, new share dummy, new

debt dummy, and lagged market regression residuals. We add these variables into our

expected growth specification to evaluate its sensitivity. We drop the log(q) growth from

Barro to avoid multicollinearity because log(q) is already in our specification. We lag all the

variables from Morck et al. to avoid look-ahead bias in our forecasting regressions.

Adding Barro’s (1990) variables (with 1-year-lagged investment-to-assets changes, d�1I/

A) yields an expected growth premium of 0.59% per month (t¼5.52), with a q-factor

alpha of 0.31% (t¼ 1.99) (Supplementary Appendix). Adding the variables from Morck,

Shleifer, and Vishny (1990) into our specification yields an expected growth premium of

0.63% (t¼7.07), with a q-factor alpha of 0.43% (t¼3.35). To reiterate, our expected

growth factor depends on its specification and the list of predictors to be included. In par-

ticular, the factor depends crucially on operating cash flows as a key predictor of future

growth. While the underlying intuition based on the growing importance of intangible

investments seems clear and the t-value of 10.27 for the factor premium exceeds multiple

testing hurdles, we emphasize the minimalistic interpretation of dimension reduction.9

8 Imposing a time lag between a dependent variable and its lagged value in a forecasting regression

to avoid any mechanical relation is standard in empirical finance. For instance, in the monthly sorts

of momentum portfolios, it is standard to impose a 1-month lag between prior and subsequent

returns to avoid the short-term reversal due to market microstructure frictions (Jegadeesh and

Titman, 1993). As such, we emphasize the robustness when adding 1-year-lagged investment-to-

assets changes, d�1I/A, to the forecasting regression.

9 We echo Fama and French (2018) when adding the momentum factor, UMD, into their six-factor

specification: “We include momentum factors (somewhat reluctantly) now to satisfy insistent popu-

lar demand. We worry, however, that opening the game to factors that seem empirically robust but

lack theoretical motivation has a destructive downside: the end of discipline that produces parsi-

monious models and the beginning of a dark age of data dredging that produces a long list of fac-

tors with little hope of sifting through them in a statistically reliable way” (p. 237).
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4. Stress-Testing Factor Models

The most demanding test of the q5 model is to confront it with a vast set of testing anomaly

portfolios. We also conduct a large-scale empirical horse race with other competing factor mod-

els. We set up the playing field in Section 4.1, discuss the overall performance of different factor

models in Section 4.2, and detail individual regressions for prominent anomalies in Section 4.3.

4.1 The Playing Field

We describe testing portfolios as well as different factor models in the empirical horse race.

4.1.a. Testing Portfolios

We use the 150 anomalies that are significant at the 5% level with NYSE breakpoints and

value-weighted returns from January 1967 to December 2018 (Hou, Xue, and Zhang,

2019). Table IV provides the detailed list, which includes 39, 15, 26, 40, 27, and 3 across

the momentum, value-versus-growth, investment, profitability, intangibles, and trading

frictions categories, respectively.10

The list contains 52 anomalies that cannot be explained by the q-factor model.

Prominent examples include cumulative abnormal stock returns around quarterly earnings

announcement dates (Chan, Jegadeesh, and Lakonishok, 1996), customer momentum

(Cohen and Frazzini, 2008), and segment momentum (Cohen and Lou, 2012) in the mo-

mentum category; net payout yield (Boudoukh et al., 2007) in the value-versus-growth cat-

egory; operating accruals (Sloan, 1996), discretionary accruals (Xie, 2001), net operating

assets (Hirshleifer et al., 2004), and net stock issues (Pontiff and Woodgate, 2008) in the in-

vestment category; asset turnover (Soliman, 2008) and operating profits-to-assets (Ball

et al., 2015) in the profitability category; R&D-to-market (Chan, Lakonishok, and

Sougiannis, 2001) and seasonalities (Heston and Sadka, 2008) in the intangibles category.

4.1.b. Factor Models

In addition to the q and q5 models, we examine six other models, including (i) the Fama–

French (2015) five-factor model; (ii) the Fama–French (2018) six-factor model with RMW;

(iii) the Fama–French alternative six-factor model with RMWc; (iv) the Barillas–Shanken

(2018) six-factor model; (v) the Stambaugh–Yuan (2017) four-factor model; and (vi) the

Daniel–Hirshleifer–Sun (2019) three-factor model. As shown in Hou et al. (2019), the ex-

planatory power of the Stambaugh–Yuan and Daniel et al. models is exaggerated because

both deviate from the standard factor contribution per Fama and French (1993). To level the

playing field, we use the replicated versions of the two models per the standard construction.

Supplementary Appendix describes the replication of these factor models in detail.

Table V reports monthly Sharpe ratios for individual factors and maximum Sharpe

ratios for different factor models. The maximum Sharpe ratio for a given factor model is

calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0f V

�1
f lf

q
, in which lf is the vector of mean factor returns, and Vf the vari-

ance–covariance matrix of the factor returns in the model (MacKinlay, 1995). From Panel

10 In their original 1967–2016 sample, Hou, Xue, and Zhang (2019) report 158 significant anomalies,

including 36, 29, 28, 35, 26, and 4 across the momentum, value-versus-growth, investment, profit-

ability, intangibles, and trading frictions categories, respectively. We extend the sample through

December 2018. The big news is in the value-versus-growth category, in which the number of sig-

nificance drops drastically from 29 to 15. The number of significance increases slightly in the mo-

mentum and profitability categories but stays largely the same in the other three categories.
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Table IV. The list of significant anomalies to be explained

The 150 anomalies (significant with NYSE breakpoints and value-weighted returns) are

grouped into six categories: (i) momentum; (ii) value-versus-growth; (iii) investment; (iv) profit-

ability; (v) intangibles; and (vi) trading frictions. The number in parenthesis in the title of a panel

is the number of anomalies in that category. For each anomaly variable, we list its symbol, brief

description, and its academic source. Hou, Xue, and Zhang (2019) detail variable definition and

portfolio construction.

Panel A: Momentum (39)

Sue1 Earnings surprise (1-month period),

Foster, Olsen, and Shevlin (1984)

Abr1 Cumulative abnormal returns around

earnings announcements (1-month

period), Chan, Jegadeesh, and

Lakonishok (1996)

Abr6 Cumulative abnormal returns around

earnings announcements (6-month

period), Chan, Jegadeesh, and

Lakonishok (1996)

Abr12 Cumulative abnormal returns around

earnings announcements (12-month

period), Chan, Jegadeesh, and

Lakonishok (1996)

Re1 Revisions in analysts’ forecasts (1-month

period), Chan, Jegadeesh, and

Lakonishok (1996)

Re6 Revisions in analysts’ forecasts (6-month

period), Chan, Jegadeesh, and

Lakonishok (1996)

R61 Price momentum (6-month prior returns,

1-month period), Jegadeesh and

Titman (1993)

R66 Price momentum (6-month prior returns,

6-month period), Jegadeesh and

Titman (1993)

R612 Price momentum (6-month prior returns,

12-month period), Jegadeesh and

Titman (1993)

R111 Price momentum (11-month prior

returns, 1-month period), Fama and

French (1996)

R116 Price momentum, (11-month prior

returns, 6-month period), Fama and

French (1996)

R1112 Price momentum, (11-month prior

returns, 12-month period), Fama and

French (1996)

Im1 Industry momentum (1-month period),

Moskowitz and Grinblatt (1999)

Im6 Industry momentum (6-month period),

Moskowitz and Grinblatt (1999)

Im12 Industry momentum (12-month period),

Moskowitz and Grinblatt (1999)

Rs1 Revenue surprise (1-month period),

Jegadeesh and Livnat (2006)

dEf1 Analysts’ forecast change (1-month

period), Hawkins, Chamberlin, and

Daniel (1984)

dEf6 Analysts’ forecast change (6-month

period), Hawkins, Chamberlin, and

Daniel (1984)

dEf12 Analysts’ forecast change (12-month

period), Hawkins, Chamberlin, and

Daniel (1984)

Nei1 # of consecutive quarters with earnings

increases (1-month period), Barth,

Elliott, and Finn (1999)

52w6 52-week high (6-month period), George

and Hwang (2004)

52w12 52-week high (12-month period),

George and Hwang (2004)

�66 6-month residual momentum (6-month

period), Blitz, Huij, and Martens

(2011)

�612 6-month residual momentum (12-month

period), Blitz, Huij, and Martens

(2011)

�111 11-month residual momentum (1-month

period), Blitz, Huij, and Martens

(2011)

�116 11-month residual momentum (6-month

period), Blitz, Huij, and Martens

(2011)

�1112 11-month residual momentum (12-

month period), Blitz, Huij, and

Martens (2011)

Sm1 Segment momentum (1-month period),

Cohen and Lou (2012)

(continued)
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Sm12 Segment momentum (12-month period),

Cohen and Lou (2012)

Ilr1 Industry lead-lag effect in prior returns

(1-month period), Hou (2007)

Ilr6 Industry lead-lag effect in prior returns

(6-month period), Hou (2007)

Ilr12 Industry lead-lag effect in prior returns

(12-month period), Hou (2007)

Ile1 Industry lead-lag effect in earnings news

(1-month period), Hou (2007)

Cm1 Customer momentum (1-month period),

Cohen and Frazzini (2008)

Cm12 Customer momentum (12-month

period), Cohen and Frazzini (2008)

Sim1 Supplier industries momentum (1-month

period), Menzly and Ozbas (2010)

Cim1 Customer industries momentum (1-

month period), Menzly and Ozbas

(2010)

Cim6 Customer industries momentum (6-

month period), Menzly and Ozbas

(2010)

Cim12 Customer industries momentum (12-

month period), Menzly and Ozbas

(2010)

Panel B: Value-versus-growth (15)

Bm Book-to-market equity, Rosenberg,

Reid, and Lanstein (1985)

Epq1 Quarterly earnings-to-price (1-month

period)

Epq6 Quarterly earnings-to-price (6-month

period)

Epq12 Quarterly earnings-to-price (12-month

period)

Cpq1 Quarterly cash flow-to-price (1-month

period)

Cpq6 Quarterly cash flow-to-price (6-month

period)

Nop Net payout yield, Boudoukh et al.

(2007)

Em Enterprise multiple, Loughran and

Wellman (2011)

Emq1 Quarterly enterprise multiple (1-month

period)

Sp Sales-to-price, Barbee, Mukherji, and

Raines (1996)

Spq1 Quarterly sales-to-price (1-month

period)

Spq6 Quarterly sales-to-price (6-month

period)

Spq12 Quarterly sales-to-price (12-month

period)

Ocp Operating cash flow-to-price, Desai,

Rajgopal, and Venkatachalam (2004)

Ocpq1 Quarterly operating cash flow-to-price

(1-month period)

Panel C: Investment (26)

Ia Investment-to-assets, Cooper, Gulen,

and Schill (2008)

Iaq6 Quarterly investment-to-assets (6-month

period)

Iaq12 Quarterly investment-to-assets (12-

month period)

dPia (Changes in PPE and inventory)/assets,

Lyandres, Sun, and Zhang (2008)

Noa Net operating assets, Hirshleifer et al.

(2004)

dNoa Changes in net operating assets,

Hirshleifer et al. (2004)

dLno Change in long-term net operating

assets, Fairfield, Whisenant, and Yohn

(2003)

Ig Investment growth, Xing (2008)

2Ig Two-year investment growth, Anderson

and Garcia-Feijoo (2006)

Nsi Net stock issues, Pontiff and Woodgate

(2008)

(continued)
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dIi % change in investment–% change in in-

dustry investment, Abarbanell and

Bushee (1998)

Cei Composite equity issuance, Daniel and

Titman (2006)

Ivg Inventory growth, Belo and Lin (2012) Ivc Inventory changes, Thomas and Zhang

(2002)

Oa Operating accruals, Sloan (1996) dWc Change in net noncash working capital,

Richardson et al. (2005)

dCoa Change in current operating assets,

Richardson et al. (2005)

dNco Change in net noncurrent operating

assets, Richardson et al. (2005)

dNca Change in noncurrent operating assets,

Richardson et al. (2005)

dFin Change in net financial assets,

Richardson et al. (2005)

dFnl Change in financial liabilities,

Richardson et al. (2005)

dBe Change in common equity, Richardson

et al. (2005)

Dac Discretionary accruals, Xie (2001) Poa Percent operating accruals, Hafzalla,

Lundholm, and Van Winkle (2011)

Pta Percent total accruals, Hafzalla,

Lundholm, and Van Winkle (2011)

Pda Percent discretionary accruals

Panel D: Profitability (40)

Roe1 Return on equity (1-month period),

Hou, Xue, and Zhang (2015)

Roe6 Return on equity (6-month period),

Hou, Xue, and Zhang (2015)

dRoe1 Change in Roe (1-month period) dRoe6 Change in Roe (6-month period)

dRoe12 Change in Roe (12-month period), Roa1 Return on assets (1-month period),

Balakrishnan, Bartov, and Faurel

(2010)

dRoa1 Change in Roa (1-month period) dRoa6 Change in Roa (6-month period)

Ato Asset turnover, Soliman (2008) Cto Capital turnover, Haugen and Baker

(1996)

Rnaq1 Quarterly return on net operating assets

(1-month period)

Rnaq6 Quarterly return on net operating assets

(6-month period)

Atoq1 Quarterly asset turnover (1-month

period)

Atoq6 Quarterly asset turnover (6-month

period)

Atoq12 Quarterly asset turnover (12-month

period)

Ctoq1 Quarterly capital turnover (1-month

period)

Ctoq6 Quarterly capital turnover (6-month

period)

Ctoq12 Quarterly capital turnover (12-month

period)

Gpa Gross profits-to-assets, Novy-Marx

(2013)

Glaq1 Gross profits-to-lagged assets (1-month

period)

Glaq6 Gross profits-to-lagged assets (6-month

period)

Glaq12 Gross profits-to-lagged assets (12-month

period)

Oleq1 Operating profits-to-lagged equity (1-

month period)

Oleq6 Operating profits-to-lagged equity (6-

month period)

Opa Operating profits-to-assets, Ball et al.

(2015)

Olaq1 Operating profits-to-lagged assets (1-

month period)

Olaq6 Operating profits-to-lagged assets (6-

month period)

Olaq12 Operating profits-to-lagged assets (12-

month period)

Cop Cash-based operating profitability, Ball

et al. (2016)

Cla Cash-based operating profits-to- lagged

assets

(continued)
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Claq1 Cash-based operating profits-to-lagged

assets (1-month period)

Claq6 Cash-based operating profits-to-lagged

assets (6-month period)

Claq12 Cash-based operating profits-to-lagged

assets (12-month period)

Fq1 Quarterly F-score (1-month period)

Fq6 Quarterly F-score (6-month period) Fq12 Quarterly F-score (12-month period)

Fpq6 Failure probability (6-month period),

Campbell, Hilscher, and Szilagyi

(2008)

Oq1 Quarterly O-score (1-month period)

Tbiq12 Quarterly taxable income-to-book in-

come (12-month period)

Sgq1 Quarterly sales growth (1-month period)

Panel E: Intangibles (27)

Oca Organizational capital/assets, Eisfeldt

and Papanikolaou (2013)

Ioca Industry-adjusted organizational capital/

assets, Eisfeldt and Papanikolaou

(2013)

Adm Advertising expense-to-market, Chan,

Lakonishok, and Sougiannis (2001)

Rdm R&D-to-market, Chan, Lakonishok,

and Sougiannis (2001)

Rdmq1 Quarterly R&D-to-market (1-month

period)

Rdmq6 Quarterly R&D-to-market (6-month

period)

Rdmq12 Quarterly R&D-to-market (12-month

period)

Rdsq6 Quarterly R&D-to-sales (6-month

period)

Rdsq12 Quarterly R&D-to-sales (12-month

period)

Ol Operating leverage, Novy-Marx (2011)

Olq1 Quarterly operating leverage (1-month

period)

Olq6 Quarterly operating leverage (6-month

period)

Olq12 Quarterly operating leverage (12-month

period)

Hs Industry concentration (sales), Hou and

Robinson (2006)

Rer Real estate ratio, Tuzel (2010) Eprd Earnings predictability, Francis et al.

(2004)

Etl Earnings timeliness, Francis et al. (2004) Almq1 Quarterly market assets liquidity (1-

month period)

Almq6 Quarterly market assets liquidity (6-

month period)

Almq12 Quarterly market assets liquidity (12-

month period)

R1
a Year 1-lagged return, annual Heston and

Sadka (2008)

R1
n Year 1-lagged return, nonannual Heston

and Sadka (2008)

R
½2;5�
a Years 2–5 lagged returns, annual Heston

and Sadka (2008)

R
½6;10�
a Years 6–10 lagged returns, annual

Heston and Sadka (2008)

R
½6;10�
n Years 6–10 lagged returns, nonannual

Heston and Sadka (2008)

R
½11;15�
a Years 11–15 lagged returns, annual

Heston and Sadka (2008)

R
½16;20�
a Years 16–20 lagged returns, annual

Heston and Sadka (2008)

Panel F: Trading frictions (3)

Dtv12 Dollar trading volume (12-month

period), Brennan, Chordia, and

Subrahmanyam (1998)

Isff1 Idiosyncratic skewness per the 3-factor

model (1-month period)

Isq1 Idiosyncratic skewness per the q-factor

model (1-month period)

Table IV. Continued
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A, the individual Sharpe ratio is the highest, 0.44, for the expected growth factor, REg, fol-

lowed by the post-earnings-announcement-drift (PEAD) factor, 0.32. The investment fac-

tor, RI=A, has a Sharpe ratio of 0.2, which is higher than 0.15 for CMA. The Roe factor,

RRoe, has a Sharpe ratio of 0.22, which is higher than 0.13 for RMW and 0.19 for RMWc.

Panel B shows that the q5 model has the highest maximum Sharpe ratio, 0.63, among all

the factor models. The Sharpe ratio for the q-factor model is 0.42, which compares favor-

ably with 0.37 for the Fama–French (2018) six-factor model, but falls slightly short of 0.43

for their alternative six-factor model. The Barillas–Shanken (2018) six-factor model has a

higher Sharpe ratio of 0.48 than the q-factor model. Based on this evidence, Barillas and

Shanken argue that their six-factor model is a better model than the q-factor model and

testing assets are largely irrelevant. Our extensive evidence based on 150 anomalies casts

doubt on their conclusion (Sections 4.2 and 4.3).

4.2 The Big Picture of Model Performance

4.2.a. Performance across 150 Anomalies

Panel A of Table VI shows the overall performance of different factor models in explaining

the 150 significant anomalies. The q5 model is the overall best performer. The q-factor

model performs well too, with a lower number of significant high-minus-low alphas but a

higher number of rejections by the GRS test than the Fama–French six-factor model and

the Stambaugh–Yuan model. The Fama–French five-factor, the Barillas–Shanken, and the

Daniel–Hirshleifer–Sun models all perform poorly.

The q-factor model leaves 52 significant high-minus-low alphas with jtj � 1:96 and 25

with jtj � 3. The average magnitude of high-minus-low alphas is 0.28% per month. Across

all 150 sets of deciles, the mean absolute alpha is 0.11%, but the q-factor model is still

rejected by the GRS test at the 5% level in 101 sets of deciles. The q5 model improves on

the q-factor model substantially. The average magnitude of high-minus-low alphas is

0.19% per month. The number of significant high-minus-low alphas is 23 with jtj � 1:96

and 6 with jtj � 3, dropping from 52 and 25, respectively, in the q-factor model. The mean

absolute alpha across all the deciles is 0.1%. Finally, the q5 model is rejected by the GRS

test in only 57 sets of deciles, and this number of GRS rejections represents a reduction of

44% from 101 in the q-factor model.

The Fama–French five-factor model performs poorly. The model leaves 100 high-

minus-low alphas with jtj � 1:96 and 69 with jtj � 3. Both are the highest across all factor

models. The average magnitude of high-minus-low alphas is 0.43% per month. The model

is rejected by the GRS test in 112 sets of deciles. The Fama–French six-factor model per-

forms better. The numbers of high-minus-low alphas with jtj � 1:96 and jtj � 3 fall to 74

and 37, respectively. The average magnitude of high-minus-low alphas drops to 0.3%, and

the number of GRS rejections to 91. However, other than the lower number of GRS rejec-

tions, the six-factor model underperforms the q-factor model.

Replacing RMW with RMWc in the Fama–French six-factor model improves its per-

formance. The average magnitude of high-minus-low alphas falls to 0.27% per month,

which is on par with the q-factor model. The number of significant high-minus-low alphas

with jtj � 1:96 drops to 59, which is still higher than 52 in the q-factor model. Finally, the

number of GRS rejections falls to 71, which is substantially lower than 101 in the q-factor

model but still higher than 57 in the q5 model. The q5 model also outperforms the alterna-

tive six-factor model with RMWc in all the other metrics.
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The Barillas–Shanken six-factor model performs poorly. The average magnitude of

high-minus-low alphas is 0.29% per month. The numbers of significant high-minus-low

alphas with jtj � 1:96 and jtj � 3 are 63 and 37, respectively. The mean absolute alpha

across all deciles is 0.13%. The number of GRS rejections is 132 (out of 150). This number

of rejections is the highest among all factor models.

The Stambaugh–Yuan four-factor model performs well. It underperforms the q-factor

model in terms of the number of high-minus-low alphas with jtj � 1:96 (64 versus 52) but

outperforms in the number of GRS rejections (87 versus 101). However, the q5 model sub-

stantially outperforms the Stambaugh–Yuan model in all metrics.

Finally, the Daniel–Hirshleifer–Sun three-factor model performs poorly. The average

magnitude of high-minus-low alphas is 0.37% per month, which is the second highest

among all factor models. The numbers of significant high-minus-low alphas with jtj � 1:96

and jtj � 3 are 70 and 33, respectively. The mean absolute alpha across all 150 sets of dec-

iles is 0.14%, which is the highest among all models. The number of GRS rejections is 97.11

Table V. Monthly Sharpe ratios (January 1967 to December 2018)

Panel A reports Sharpe ratios for the market, size, investment, and Roe factors in the Hou–Xue–

Zhang q-factor model (q), RMkt; RMe; RI=A, and RRoe, respectively; the expected growth factor, REg,

in the q5 model (q5); the size, value, conservative-minus-aggressive investment, and profitability

factors in the Fama–French five-factor model (FF5), SMB, HML, CMA, and RMW, respectively;

UMD in the Fama–French six-factor model (FF6); the cash-based profitability factor, RMWc, in the

Fama–French alternative six-factor model (FF6c); the monthly formed value factor, HMLm, in the

Barillas–Shanken six-factor model (BS6); the management (MGMT) and performance (PERF) fac-

tors in the Stambaugh–Yuan four-factor model (SY4); and the financing (FIN) and PEAD factors in

the Daniel–Hirshleifer–Sun three-factor model (DHS). Panel B reports the maximum Sharpe ratios

for each factor model, calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0f V�1

f lf

q
, in which lf is the vector of mean factor returns in

the factor model, and Vf is the variance–covariance matrix for the vector of factor returns.

Panel A: Sharpe ratios for individual factors

RMkt RMe RI=A RRoe REg SMB HML CMA

0.112 0.094 0.200 0.218 0.444 0.074 0.112 0.149

RMW RMWc UMD HMLm MGMT PERF FIN PEAD

0.125 0.186 0.151 0.083 0.195 0.163 0.104 0.320

Panel B: Maximum Sharpe ratios for factor models

q q5 FF5 FF6 FF6c BS6 SY4 DHS

0.416 0.634 0.322 0.365 0.434 0.475 0.412 0.416

11 Supplementary Appendix shows that an alternative Daniel–Hirshleifer–Sun model with the PEAD

factor based on Abr only still underperforms the q-factor and q5 models from July 1972 to

December 2018. The average magnitude of high-minus-low alphas is 0.32% per month (0.28% in

the q-factor model and 0.2% in the q5 model in the same sample), the number of high-minus-low

alphas with jt j � 1:96 is 59 (49 in q and 23 in q5), the number of high-minus-low alphas with

jt j � 3 is 13 (23 in q and 5 in q5), the mean absolute alpha 0.12% (0.12% in q and 0.1% in q5), and

the number of GRS rejections 67 (87 in q and 53 in q5).
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4.2.b. Performance across Each Category of Anomalies

Panels B–G of Table VI show that the q5 model improves on the q-factor model across

most categories, especially in the investment and profitability categories.

Momentum. From Panel B of Table VI, the improvement in the momentum category is

noteworthy. Across the 39 significant momentum anomalies, the average magnitude of

high-minus-low q5 alphas is 0.17% per month (0.25% in the q-factor model). The q5 model

reduces the number of significant high-minus-low alphas with jtj � 1:96 from 11 to 4 (3 to

1 with jtj � 3), the mean absolute alpha from 0.1% per month slightly to 0.09%, and the

number of GRS rejections from 24 to 15.

The Fama–French five-factor model shows no explanatory power for momentum, leav-

ing 37 out of 39 high-minus-low alphas with jtj � 1:96 (29 with jtj � 3) as well as the GRS

rejections in 36 sets of deciles. The average magnitude of high-minus-low alphas, 0.62%

per month, and the mean absolute alpha across all deciles, 0.15%, are the highest among

all factor models. Even with UMD, the Fama–French six-factor model still leaves 19 high-

minus-low alphas significant with jtj � 1:96 and 6 with jtj � 3. The six-factor model is

rejected by the GRS test in 21 sets of deciles. Changing RMW to RMWc in the Fama–

French six-factor model improves the metrics to 14, 5, and 18, respectively. However, the

alternative six-factor model still underperforms the q5 model in all metrics, including the

number of GRS rejections (18 versus 15) and the number of significant high-minus-low

alphas (14 versus 4 with jtj � 1:96 and 5 versus 1 with jtj � 3).

Other than the slightly lower average magnitude of high-minus-low alphas, 0.23% ver-

sus 0.25% per month, the Barillas–Shanken six-factor model underperforms the q-factor

model. The numbers of high-minus-low alphas with jtj � 1:96 and jtj � 3 are 12 and 4, in

contrast to 11 and 3 in the q-factor model, respectively. The mean absolute alpha is 0.12%,

and the number of GRS rejections 33. Both are higher than 0.1% and 24 in the q-factor

model, respectively. The Stambaugh–Yuan four-factor model performs poorly, leaving 19

high-minus-low alphas with jtj � 1:96 and 6 with jtj � 3. The average magnitude of high-

minus-low alphas is 0.32% (0.25% in the q-factor model). Finally, the Daniel–Hirshleifer–

Sun three-factor model underperforms the q-factor model with a higher mean absolute

alpha of 0.14% and a higher number of GRS rejections of 26. However, its number of sig-

nificant high-minus-low alphas with jtj � 1:96 is slightly lower at 10.

Value-versus-growth. Panel C of Table VI shows that among the 15 value-versus-growth

anomalies, the role of the expected growth factor is limited. The q-factor model leaves 1

high-minus-low alphas with jtj � 1:96 (3 in the q5 model) and 0 with jtj � 3 (0 in the q5

model). The average magnitude of high-minus-low alphas is 0.21% per month, the mean

absolute alpha 0.11%, and the number of GRS rejections is 8, compared with 0.22%,

0.13%, and 7 in the q5 model, respectively.

The Fama–French five-factor model performs very well in this category. The average

magnitude of high-minus-low alphas is 0.15% per month, the number of high-minus-low

alphas with jtj � 1:96 is only 2 (0 with jtj � 3), the mean absolute alpha 0.1%, and the

number of GRS rejections 7. This performance benefits from having both CMA and HML,

while giving up on momentum. Including UMD per the six-factor model raises the average

magnitude of high-minus-low alphas to 0.19%, the number of alphas with jtj � 1:96 to 4,

and the number of GRS rejections to 9. Adopting RMWc in the six-factor model improves

these metrics slightly to 0.17%, 3, and 6, respectively.
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The Barillas–Shanken six-factor model performs poorly. The average magnitude of

high-minus-low alphas is 0.23% per month, the numbers of alphas with jtj � 1:96 and

jtj � 3 are 6 and 2, respectively, and the mean absolute alpha is 0.13%. More important,

the number of GRS rejections is 14 (out of 15 anomalies). Relative to the q-factor model,

the Stambaugh–Yuan four-factor model yields higher numbers of significant high-minus-

low alphas, 4 with jtj � 1:96 and 1 with jtj � 3 (1 and 0 in the q-factor model), and a

higher number of GRS rejections, 9 (8 in the q-factor model).

Finally, the Daniel–Hirshleifer–Sun three-factor model performs very poorly. The aver-

age magnitude of the high-minus-low alphas is the highest among all models, 0.78% per

month. All 15 high-minus-low alphas are significant with jtj � 1:96 (13 with jtj � 3). All

15 sets of deciles yield rejections in the GRS test. The mean absolute alpha of 0.23% is also

the highest among all models. Intuitively, the value-minus-growth deciles tend to have large

and negative PEAD factor loadings, going in the wrong direction in explaining average

returns, as well as positive but smaller FIN factor loadings, going in the right direction

(untabulated). Because the PEAD premium is larger than the FIN premium, the Daniel–

Hirshleifer–Sun model exacerbates the value-versus-growth anomalies.

Investment. Panel D of Table VI shows that the q5 model is the best performer in the invest-

ment category. All but one of the 26 high-minus-low alphas have jtj � 1:96, and none have

jtj � 3. The number of GRS rejections is 6. The average magnitude of high-minus-low

alphas is 0.1% per month, and the mean absolute alpha 0.08%. This performance improves

substantially on the q-factor model, which leaves 9 high-minus-low alphas with jtj � 1:96

and 4 with jtj � 3, as well as 19 GRS rejections.

The Fama–French six-factor model is largely comparable with the q-factor model.

While outperforming the q-factor model, the alternative six-factor model with RMWc

underperforms the q5 model, leaving 8 high-minus-low alphas with jtj � 1:96 (1 in q5) and

2 with jtj � 3 (0 in q5) as well as 7 GRS rejections (6 in q5). The average magnitude of high-

minus-low alphas is 0.18% (0.1% in q5).

The Barillas–Shanken six-factor model is comparable with the q-factor model, with a

slightly lower number of high-minus-low alphas with jtj � 1:96 (8 versus 9), but a higher

number of GRS rejections (24 versus 19). The Stambaugh–Yuan four-factor model outper-

forms the q-factor model slightly but underperforms the q5 model substantially. The aver-

age absolute high-minus-low alpha is 0.19% (0.1% in q5), the number of high-minus-low

alphas with jtj � 1:96 is 8 (1 in q5), and the number of GRS rejections is 17 (6 in q5).

Finally, the Daniel–Hirshleifer–Sun three-factor model performs the worst, with the highest

average magnitude of high-minus-low alphas, 0.34%, the highest number of high-minus-

low alphas with jtj � 1:96, 20, and the second highest number of GRS rejections, 22.

Profitability. From Panel E of Table VI, the q5 model is the best performer in the profitabil-

ity category. The model leaves 5 out of 40 high-minus-low alphas with jtj � 1:96 (16 in the

q-factor model) and 1 with jtj � 3 (6 in q). The average absolute high-minus-low alpha is

0.14% per month (0.25% in q), the mean absolute alpha 0.09% (0.10% in q), and the

number of GRS rejections 14 (28 in q).

The other factor models underperform the q5 model, often substantially. The Fama–

French alternative six-factor model with RMWc has a higher number of GRS rejections,

21, a higher average absolute high-minus-low alpha, 0.26%, as well as higher numbers of

high-minus-low alphas with jtj � 1:96, 18, and with jtj � 3, 7, than the q5 model. The six-
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factor model with RMW performs worse than the alternative six-factor model. The

Barillas–Shanken six-factor model underperforms the q-factor model in all metrics. Also,

other than fewer GRS rejections (24 versus 28), the Stambaugh–Yuan four-factor model

also underperforms the q-factor model. The Daniel–Hirshleifer–Sun three-factor model out-

performs the q-factor model, with a lower average magnitude of high-minus-low alphas,

0.18%, a lower number of high-minus-low alphas with jtj � 1:96, 6, and a lower number

of GRS rejections, 13. However, even this performance is weaker than that of the q5 model.

Intangibles and Trading Frictions. Panel F shows that the q5 model is the best performer in

the intangibles category. The model leaves 8 out of 27 high-minus-low alphas with jtj �
1:96 (4 with jtj � 3). The average magnitude of high-minus-low alphas is 0.36% per

month, the mean absolute alpha 0.15%, and the number of GRS rejections 13. The second-

best performer is the Stambaugh–Yuan model, with only slightly worse metrics than the q5

model. The q-factor model leaves 13 high-minus-low alphas with jtj � 1:96 and 11 with

jtj � 3. The average magnitude of high-minus-low alphas is 0.47%, the mean absolute

alpha 0.18%, and the number of GRS rejections 19. The Fama–French and Barillas–

Shanken models deliver largely similar performance as the q-factor model. The Daniel–

Hirshleifer–Sun model again performs poorly, with the highest average absolute high-

minus-low alpha, 0.6%, and the second highest number of high-minus-low alphas with

jtj � 1:96, 16. From Panel G, with only three trading frictions anomalies, the performance

of all models is largely similar, except for the Daniel–Hirshleifer–Sun model, which has the

highest average magnitude of high-minus-low alphas, 0.5% per month, and the highest

mean absolute alpha, 0.18%. The q5 model leaves 2 high-minus-low alphas with jtj � 1:96

but 0 with jtj � 3. The average magnitude of high-minus-low alphas is 0.19%, the mean

absolute alpha 0.08%, and the number of GRS rejections 2.

4.2.c. Testing Deciles Formed on Composite Scores

As an alternative way to summarize the overall performance of different factor models, we

form composite scores across all 150 anomalies as well as across each of the six categories

of anomalies. We then use deciles formed on the composite scores as testing portfolios in

factor regressions. Although containing less disaggregated information than Table VI, this

approach directly quantifies to what extent a given category (as well as all) of anomalies

can be explained by a given factor model.

For a given set of anomalies, we construct its composite score for a stock by equal-

weighting the stock’s percentile rankings for the anomalies in question. Because anomalies

forecast returns with different signs, we realign the anomalies to yield positive slopes in

forecasting returns before forming the composite score. At the beginning of month t, we

split stocks into deciles based on the NYSE breakpoints of the composite score that aggre-

gates a given set of anomalies.12 We calculate value-weighted decile returns for month t

and rebalance the deciles at the beginning of month tþ 1.

12 As detailed in Hou, Xue, and Zhang (2019), some anomaly deciles are formed monthly, whereas

others are formed annually. When calculating the percentile rankings for a given anomaly at the

beginning of month t, we adopt the same sorting frequency as in individual anomaly deciles. The

percentile rankings for monthly sorted anomalies are recalculated monthly, and those for annually

sorted anomalies are recalculated at the end of each June.
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Table VII shows that the q5 model is the overall best performer. Aggregating all 150

anomalies, the high-minus-low decile is on average 1.69% per month (t¼ 9.62). The high-

minus-low alpha is the lowest in the q5 model, 0.37%, albeit significant (t¼2.62). The

high-minus-low decile has large, positive loadings on the investment, Roe, and expected

growth factors, 0.57, 0.81, and 0.74 (t¼ 6.28, 8.48, and 7.81), respectively. The mean ab-

solute alpha across all deciles is also the lowest in the q5 model, 0.1%, but the model is still

rejected by the GRS test (p¼0.01). For the q-factor model, the high-minus-low alpha is

0.86% (t¼ 5.64), and the mean absolute alpha 0.16%. For comparison, the Fama–French

six-factor alpha for the high-minus-low decile is 0.94% (t¼ 7.46), and the alternative six-

factor alpha with RMWc is 0.82% (t¼6.77). The mean absolute alphas are 0.16% and

0.14%, respectively. Both are rejected by the GRS test (p¼ 0.00).

The high-minus-low composite momentum decile earns on average 1.09% per month

(t¼4.21). The q5 model yields an insignificant high-minus-low alpha of –0.25%

(t ¼ �0:85). Both the Roe and expected growth factors contribute to this performance,

with large, positive loadings of 1.16 and 0.9 (t¼5.44 and 4.49), respectively. The mean ab-

solute alpha is 0.1%, and the q5 model is not rejected by the GRS test (p¼0.35). The q-fac-

tor model yields a high-minus-low alpha of 0.35% (t¼ 1.04), the mean absolute alpha of

0.1%, and a GRS p-value of 0.08. For comparison, the Fama–French six-factor model

yields a high-minus-low alpha of 0.33% (t¼2.08), a mean absolute alpha of 0.09%, and a

GRS p-value of 0.06. The alternative six-factor model with RMWc yields a high-minus-low

alpha of 0.29% (t¼1.82), a mean absolute alpha of 0.1%, and a GRS p-value of 0.04.

The Fama–French six-factor model does a better job than the q5 model in explaining the

composite value-minus-growth premium, which is on average 0.7% per month (t¼ 3.47).

The q5 model yields a high-minus-low alpha of 0.38% (t¼2.14), a mean absolute alpha of

0.16%, and a GRS p-value of 0.00. The q-factor model produces a high-minus-low alpha

of 0.28% (t¼ 1.48), a mean absolute alpha of 0.13%, and a GRS p-value of 0.00. For com-

parison, the six-factor model produces a high-minus-low alpha of 0.19% (t¼1.58) and a

mean absolute alpha of 0.1%, but the model is also rejected by the GRS test (p¼0.00). The

performance of the alternative six-factor model with RMWc is largely similar. The Fama–

French five-factor model is the best performer in this category, with a tiny high-minus-low

alpha of 0.04% (t¼0.3), albeit still rejected by the GRS test (p¼0.00).

The high-minus-low composite investment decile earns on average 0.66% per month

(t¼4.44). The q5 model is the best performer, yielding a tiny high-minus-low alpha

of 0.06% (t¼ 0.54), a mean absolute alpha of 0.06%, and a GRS p-value of 0.15. The

q-factor model yields a high-minus-low alpha of 0.25% (t¼ 2.61), a mean absolute alpha

of 0.1%, and a GRS p-value of 0.00. For comparison, the Fama–French six-factor model

produces a high-minus-low alpha of 0.27% (t¼ 2.84), a mean absolute alpha of 0.07%,

and a GRS p-value of 0.01. The performance of the alternative six-factor model with

RMWc is largely similar, except for a GRS p-value of 0.06.

The high-minus-low composite profitability decile earns on average 0.8% per month

(t¼4.64). The q5 model performs very well, with a high-minus-low alpha of –0.14%

(t ¼ �1:21), a mean absolute alpha of 0.08%, and a GRS p-value of 0.09. The q-factor

model yields a high-minus-low alpha of 0.28% (t¼ 2.31), a mean absolute alpha of 0.07%,

and a GRS p-value of 0.01. For comparison, the Fama–French six-factor model produces a

high-minus-low alpha of 0.43% (t¼3.94), a mean absolute alpha of 0.09%, and a GRS p-

value of 0.00. The alternative six-factor model with RMWc improves the high-minus-low

30 K. Hou et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/25/1/1/5727769 by guest on 18 February 2021



Table VII. Explaining composite anomalies (January 1967 to December 2018)

We form composite scores across all the 150 anomalies (All) and across each category of

anomalies, including momentum (Mom), value-versus-growth (VvG), investment (Inv), profit-

ability (Prof), intangibles (Intan), and trading frictions (Fric). For a given set of anomalies, we

construct the composite score by equal-weighting a stock’s percentile ranking for each anomaly

(realigned to yield a positive slope in forecasting returns). At the beginning of each month t, we

split stocks into deciles based on the NYSE breakpoints of the composite scores, and calculate

value-weighted returns for month t. The deciles are rebalanced at the beginning of month tþ 1.

For each model and each set of deciles, we report the high-minus-low alpha (Panel A), its t-

value (Panel B), the mean absolute alpha (Panel C), and the GRS p-value (Panel D). We report

the results for the Hou–Xue–Zhang q-factor model (q), the q5 model (q5), the Fama–French five-

factor model (FF5), the Fama–French six-factor model (FF6), the Fama–French alternative six-

factor model with RMWc (FF6c), the Barillas–Shanken six-factor model (BS6), the Stambaugh–

Yuan model (SY4), and the Daniel–Hirshleifer–Sun model (DHS). For the q5 model, Panel E

shows the loadings on the market, size, investment, Roe, and expected growth factors

(bMkt;bMe; bI=A; bRoe, and bEg, respectively) and their t-values. The t-values are adjusted for heter-

oskedasticity and autocorrelations.

All Mom VvG Inv Prof Intan Fric All Mom VvG Inv Prof Intan Fric
�R t �R 1.69 1.09 0.70 0.66 0.80 0.94 0.23 t �R 9.62 4.21 3.47 4.44 4.64 5.27 1.77

Panel A: The high-minus-low alpha, aH�L Panel B: tH�L

q 0.86 0.35 0.28 0.25 0.28 0.42 0.16 5.64 1.04 1.48 2.61 2.31 2.62 1.80

q5 0.37 –0.25 0.38 0.06 –0.14 0.50 0.15 2.62 –0.85 2.14 0.54 –1.21 3.19 1.60

FF5 1.33 1.21 0.04 0.29 0.60 0.43 0.14 7.94 3.74 0.30 3.11 5.35 3.24 1.80

FF6 0.94 0.33 0.19 0.27 0.43 0.54 0.12 7.46 2.08 1.58 2.84 3.94 4.25 1.53

FF6c 0.82 0.29 0.12 0.27 0.30 0.57 0.12 6.77 1.82 1.05 2.62 2.30 4.17 1.34

BS6 0.68 0.21 –0.16 0.18 0.34 0.26 0.14 4.85 1.26 –1.17 1.73 2.61 1.85 1.60

SY4 0.90 0.43 0.34 0.10 0.37 0.46 0.13 7.61 1.93 2.20 1.00 2.86 3.16 1.50

DHS 0.74 –0.36 0.98 0.55 –0.09 0.89 0.57 4.98 –1.49 5.34 3.83 –0.56 5.24 4.29

Panel C: The mean absolute alpha, jaj Panel D: The GRS p-value, pGRS

q 0.16 0.10 0.13 0.10 0.07 0.18 0.10 0.00 0.08 0.00 0.00 0.01 0.00 0.00

q5 0.10 0.10 0.16 0.06 0.08 0.19 0.08 0.01 0.35 0.00 0.15 0.09 0.00 0.06

FF5 0.25 0.27 0.11 0.08 0.12 0.18 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.05

FF6 0.16 0.09 0.10 0.07 0.09 0.20 0.07 0.00 0.06 0.00 0.01 0.00 0.00 0.07

FF6c 0.14 0.10 0.10 0.06 0.07 0.21 0.06 0.00 0.04 0.00 0.06 0.09 0.00 0.28

BS6 0.13 0.09 0.12 0.09 0.09 0.15 0.11 0.00 0.07 0.00 0.00 0.00 0.00 0.00

SY4 0.16 0.10 0.14 0.07 0.09 0.18 0.09 0.00 0.01 0.00 0.01 0.00 0.00 0.01

DHS 0.14 0.16 0.31 0.12 0.07 0.28 0.13 0.00 0.00 0.00 0.00 0.35 0.00 0.00

Panel E: The q5 factor loadings

bMkt –0.03 –0.10 0.06 –0.03 0.03 –0.04 –0.05 tMkt –0.63 –1.24 1.16 –1.04 0.93 –0.83 –2.17

bMe 0.21 0.29 0.30 –0.01 –0.03 0.39 0.77 tMe 3.56 1.49 2.27 –0.28 –0.59 3.33 24.50

bI=A 0.57 –0.19 1.31 1.24 –0.43 0.69 –0.04 tI=A 6.28 –0.74 9.51 20.32 –5.34 5.13 –0.73

bRoe 0.81 1.16 –0.30 –0.17 1.05 0.35 –0.21 tRoe 8.48 5.44 –2.48 –2.57 15.42 3.17 –5.00

bEg 0.74 0.90 –0.15 0.29 0.63 –0.11 0.02 tEg 7.81 4.49 –1.08 4.15 7.63 –0.93 0.28
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alpha to 0.3% (t¼ 2.3), the mean absolute alpha to 0.07%, and the GRS p-value to 0.09.

Finally, the Daniel–Hirshleifer–Sun model is comparable with the q5 model.

The high-minus-low composite intangibles decile earns on average 0.94% per month

(t¼5.27). The q5 model yields a high-minus-low alpha of 0.5% (t¼3.19), a mean absolute

alpha of 0.19%, and a GRS p-value of 0.00. The q-factor model has a slightly lower high-

minus-low alpha of 0.42% (t¼ 2.62). The Fama–French six-factor model has a somewhat

larger high-minus-low alpha, 0.54% (t¼ 4.25), but is otherwise comparable with the q5

model. Finally, the high-minus-low composite frictions decile only earns an insignificant

average return of 0.23% (t¼ 1.77).

4.3 Individual Factor Regressions

To dig deeper, we present individual regressions of the 52 anomalies that the q-factor

model cannot explain. To save space, Table VIII reports the alphas and t-values for the q-

factor model, the q5 model, and the two versions of the Fama–French six-factor model, as

well as the q5 loadings for each high-minus-low decile. Supplementary Appendix contains

the results for all the 150 anomalies and for all the factor models.

All models including the q and q5 models fail to explain the anomaly on cumulative ab-

normal returns around earnings announcements, Abr, especially at the 1-month horizon.

The high-minus-low decile earns on average 0.73% per month (t¼ 5.74). The q-factor

alpha is 0.65% (t¼4.52), and the q5 alpha 0.52% (t¼3.8). Similarly, the Fama–French

six-factor alpha is 0.64% (t¼ 4.88), and the alternative six-factor alpha 0.65% (t¼4.71).

The Barillas–Shanken model fails to explain the value-versus-growth anomalies (book-

to-market, Bm; earnings-to-price, Epq12; and sales-to-price, Sp) (Supplementary

Appendix). The alphas for the high-minus-low deciles are –0.31, –0.44, and –0.46% per

month (t ¼ �2:39, –3.6, and –3.11), respectively. In contrast, the Fama–French six-factor

alphas are –0.09, –0.03, and –0.18% (t ¼ �0:82, –0.26, and –1.38), the q-factor alphas

0.11, –0.07, and –0.09% (t ¼ 0:71;�0:44, and –0.48), and the q5 alphas 0.05, –0.04, and

0.02% (t¼ 0.32, –0.28, and 0.1), respectively.

The culprit is that the UMD loadings in the Barillas–Shanken six-factor model are rela-

tively large, 0.41, 0.19, and 0.19 (t¼ 6.84, 3.08, and 3.83), respectively (untabulated).

In contrast, the UMD loadings in the Fama–French six-factor model are small, –0.03, –

0.07, and –0.13 (t ¼ �0:71;�1:71, and –4.19), respectively. We verify that the correlation

between the monthly formed HMLm and UMD is high, –0.65, but that between the annual-

ly formed HML and UMD is low, only –0.19. The high HMLm-UMD correlation pushes

up the UMD loadings in the presence of HMLm in the Barillas–Shanken model, causing the

model to overshoot the average returns to yield large, negative alphas.

The q5 model largely explains the accruals anomaly. The high-minus-low decile on oper-

ating accruals (Oa) has a large q-factor alpha of –0.57% per month (t ¼ �4:25). The q5

model reduces the alpha to –0.2% (t ¼ �1:3). A more challenging anomaly for the q-factor

model is discretionary accruals (Dac). The high-minus-low Dac decile has a large q-factor

alpha of –0.74% (t ¼ �5:33), and the q5 model shrinks the alpha to –0.31%, albeit still sig-

nificant (t ¼ �2:16). For comparison, the Fama–French six-factor alphas for the Oa and

Dac deciles are –0.48% (t ¼ �3:49) and –0.69% (t ¼ �5:08), and the alternative six-factor

alphas –0.32% (t ¼ �2:13) and –0.59% (t ¼ �4:12), respectively.

The q5 model also improves on the q-factor model in explaining the dWc (change in net

noncash working capital) and dFin (change in net financial assets) anomalies. The high-
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minus-low dWc and dFin deciles have significant q-factor alphas of –0.58% per month

(t ¼ �4:38) and 0.41% (t¼ 2.97) but insignificant q5 alphas of –0.23% (t ¼ �1:77) and

0.14% (t¼ 0.97), respectively. For comparison, the Fama–French six-factor alphas are

–0.51% (t ¼ �3:93) and 0.46% (t¼ 3.81), and the alternative six-factor alphas –0.36%

(t ¼ �2:6) and 0.34% (t¼ 2.63), respectively.

The high-minus-low Oa and Dac deciles have large expected growth factor (REg) load-

ings of –0.56 (t ¼ �5:58) and –0.64 (t ¼ �6:02), respectively. As such, high operating and

discretionary accruals indicate low expected growth. Intuitively, given the level of earnings,

high accruals mean low cash flows available for financing investments, giving rise to low

expected growth. Similarly, the high-minus-low dWc decile has a large REg loading of

–0.52 (t ¼ �5:45). Intuitively, increases in net noncash working capital signal high past

growth but low expected growth. Finally, the high-minus-low dFin decile has a large REg

loading of 0.4 (t¼ 3.66). Intuitively, increases in net financial assets provide more internal

funds available for investments, stimulating expected growth going forward.

The q5 model largely explains the R&D-to-market (Rdm) anomaly. The annually

sorted high-minus-low decile has a q-alpha of 0.81% per month (t¼ 3.64). The q5 model

reduces the alpha to 0.27% (t¼ 1.24) via a large REg loading of 0.84 (t¼5.37). Similarly,

in monthly sorts, at the 1-, 6-, and 12-month horizons, the high-minus-low Rdmq deciles

have q-alphas of 1.41, 1.02, and 0.92% (t¼3.33, 3.25, and 3.55) but smaller q5 alphas

of 1.05, 0.58, and 0.43% (t¼ 2.37, 1.79, and 1.6), respectively. The corresponding

REg loadings are 0.55, 0.67, and 0.75 (t ¼ 2:45; 3:5, and 4.61), respectively. Intuitively,

R&D expenses depress current earnings due to current accounting standards but raise in-

tangible capital that induces future growth opportunities. While the q-factor model

misses this economic mechanism, the q5 model with the expected growth factor accom-

modates it. For comparison, the high-minus-low Rdm decile has a Fama–French six-fac-

tor alpha of 0.68% per month (t¼ 3.24) and an alternative six-factor alpha of 0.79%

(t¼ 3.64). The high-minus-low Rdmq deciles have six-factor alphas of 1.36, 1.01, and

0.88% (t¼ 3.9, 3.48, and 3.56), as well as alternative six-factor alphas of 1.37, 1.06, and

0.96% (t ¼ 3:93;3:71, and 3.98), respectively.

5. Conclusion

In the investment theory, firms with high expected investment growth should earn higher

expected returns than firms with low expected investment growth, holding current invest-

ment and expected profitability constant. Motivated by this economic insight, we form

cross-sectional growth forecasts and construct an expected growth factor, which yields an

average premium of 0.84% per month (t¼10.27) in the 1967–2018 monthly sample. We

augment the q-factor model with the expected growth factor to form the q5 model. In a

large set of testing deciles based on 150 anomalies, the q5 model shows strong explanatory

power and substantially outperforms the Fama–French six-factor model.

Supplementary Material

Supplementary data are available at Review of Finance online.
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