Lecture Notes

Petrosky-Nadeau and Zhang (2017, Quantitative Economics, "Solving the Diamond-Mortensen-Pissarides Model Accurately")

Lu Zhang¹

¹Ohio State and NBER

FIN 8250 Ohio State, Autumn 2021 An accurate global projection algorithm is critical for quantifying the basic moments of the Diamond–Mortensen–Pissarides model

- Log linearization understates the mean and volatility of unemployment but overstates the volatility of labor market tightness and the unemployment-vacancy correlation
- Log linearization also understates the impulse responses in unemployment in recessions but overstates the responses in the market tightness in booms

Outline

1 The Hagedorn-Manovskii Model

2 The Petrosky-Nadeau, Zhang, and Kuehn Model

Outline

1 The Hagedorn-Manovskii Model

2 The Petrosky-Nadeau, Zhang, and Kuehn Model

A representative household with perfect consumption insurance: The household pools the income of all the members together before choosing per capita consumption and asset holdings

Risk neutral with a time discount factor β

A representative firm uses labor as the single productive input

The matching function:

$$G(U_t, V_t) = \frac{U_t V_t}{\left(U_t^{\iota} + V_t^{\iota}\right)^{1/\iota}}$$

in which $\iota > 0$

Define $\theta_t \equiv V_t/U_t$ as the vacancy-unemployment (V/U) ratio

The job finding rate:

$$f_t = f(\theta_t) = \frac{G(U_t, V_t)}{U_t} = \frac{1}{(1 + \theta_t^{-\iota})^{1/\iota}}$$

The vacancy filling rate:

$$q_t = q(heta_t) = rac{G(U_t, V_t)}{V_t} = rac{1}{\left(1 + heta_t^\iota
ight)^{1/\iota}}$$

with $q'(\theta_t) < 0$

The firm uses labor to produce output, Y_t :

$$Y_t = X_t N_t$$

Aggregate labor productivity, X_t , with $x_t \equiv \log(X_t)$, follows:

$$x_{t+1} = \rho x_t + \sigma \epsilon_{t+1}$$

in which $\rho \in (0,1)$, $\sigma > 0$, and ϵ_{t+1} an i.i.d. standard normal shock

Unit costs in posting vacancies:

$$\kappa_t = \kappa_K X_t + \kappa_W X_t^{\xi}$$

in which $\kappa_K, \kappa_W, \xi > 0$

Environment

Employment, N_t , evolves as:

$$N_{t+1} = (1-s)N_t + q(\theta_t)V_t$$

in which vacancies $V_t \geq 0$

The wage rate from a Nash bargaining process between the employed workers and the firm:

$$W_t = \eta \left(X_t + \kappa_t \theta_t \right) + (1 - \eta)b$$

in which $\eta \in (0,1)$ the workers' relative bargaining weight and b the workers' flow value of unemployment activities

Dividends:
$$D_t = X_t N_t - W_t N_t - \kappa_t V_t$$

Environment

The goods market clears:

$$C_t + \kappa_t V_t = X_t N_t$$

The intertemporal job creation condition:

$$\frac{\kappa_t}{q(\theta_t)} - \lambda_t = E_t \left[\beta \left(X_{t+1} - W_{t+1} + (1-s) \left(\frac{\kappa_{t+1}}{q(\theta_{t+1})} - \lambda_{t+1} \right) \right) \right]$$

The Kuhn-Tucker conditions:

$$q(\theta_t)V_t \ge 0$$
, $\lambda_t \ge 0$, and $\lambda_t q(\theta_t)V_t = 0$

Algorithm: Projection with parameterized expectations

Solve for labor market tightness, $\theta_t = \theta(x_t)$, and the multiplier function, $\lambda_t = \lambda(x_t)$ from the intertemporal job creation condition

 $\theta(x_t)$ and $\lambda(x_t)$ must also satisfy the Kuhn-Tucker condition

We approximate the conditional expectation in the right-hand side of the job creation condition as $\mathcal{E}_t \equiv \mathcal{E}(x_t)$

After obtaining \mathcal{E}_t , we first calculate $\tilde{q}(\theta_t) \equiv \kappa_t/\mathcal{E}_t$

If $\tilde{q}(\theta_t) < 1$, the nonnegativity constraint is not binding, we set $\lambda_t = 0$ and $q(\theta_t) = \tilde{q}(\theta_t)$, and then solve $\theta_t = q^{-1}(\tilde{q}(\theta_t))$, in which $q^{-1}(\cdot)$ is the inverse function of $q(\cdot)$

If
$$\tilde{q}(\theta_t) \geq 1$$
, we set $\theta_t = 0$, $q(\theta_t) = 1$, and $\lambda_t = \kappa_t - \mathcal{E}_t$

The Hagedorn-Manovskii Model Algorithm, discrete state space

Approximate the persistent log productivity process, x_t , based on the Rouwenhorst (1995) method

Use 17 grid points to cover the values of x_t , which are precisely within four unconditional standard deviations above and below the unconditional mean of zero

The conditional expectation calculated via matrix multiplication

To obtain an initial guess of the $\mathcal{E}(x_t)$ function, we use the model's loglinear solution via Dynare

Algorithm, continuous state space

Approximate the $\mathcal{E}(x_t)$ function (within four unconditional standard deviations of x_t from its unconditional mean of zero) with tenth-order Chebychev polynomials

The Chebychev nodes obtained with the collocation method

Use the Miranda-Fackler (2002) CompEcon toolbox for function approximation and interpolation

The conditional expectation in the right hand side of the job creation equation computed with the Gauss-Hermite quadrature

Weekly calibration

The time discount factor, β , $0.99^{1/12}$

The persistence of log productivity, ρ , 0.9895, and its conditional volatility, σ , 0.0034

The workers' bargaining weight, η , 0.052

Flow value of unemployment activities, b, 0.955

The job separation rate, s, 0.0081

The elasticity of the matching function, ι , 0.407

For the vacancy cost function, the capital cost parameter, κ_K , 0.474, the labor cost parameter, κ_W , 0.11, and the exponential parameter in the labor cost, ξ , 0.449

Figure 1: The conditional expectation and labor market tightness

Table 1: Labor market moments

	U	V	θ	X		U	V	θ	X	
		HM (200	8, Table	4)		Loglinearization				
Std	0.145	0.169	0.292	0.013		0.133	0.144	0.327	0.013	
ho	0.830	0.575	0.751	0.765		0.831	0.681	0.783	0.760	
Correlation		-0.724	-0.916	-0.892	U		-0.848	-0.864	-0.927	
			0.940	0.904	V			0.858	0.985	
				0.967	θ				0.890	
	2	nd-order	perturbat	tion		Projection				
Std	0.164	0.178	0.263	0.013		0.257	0.174	0.267	0.013	
ho	0.831	0.704	0.788	0.760		0.823	0.586	0.759	0.760	
Correlation		-0.791	-0.794	-0.795	U		-0.567	-0.662	-0.699	
			0.946	0.973	V			0.890	0.909	
				0.993	θ				0.996	

Figure 2: Nonlinear dynamics, projection vs. loglinearization

Figure 3: Ergodic distribution, U_t , projection vs. loglinearization

Figure 3: Ergodic distribution, V_t , projection vs. loglinearization

Figure 3: Ergodic distribution, θ_t , projection vs. loglinearization

Figure 4: Nonlinear impulse response, U_t , projection vs. loglinearization

Figure 4: Nonlinear impulse response, θ_t , projection vs. loglinearization

Figure 5: Euler equation errors in the state space

Figure 5: Euler equation errors in simulations

Outline

1 The Hagedorn-Manovskii Model

2 The Petrosky-Nadeau, Zhang, and Kuehn Model

A representative household with log utility, $log(C_t)$

A representative firm uses labor, N_t , and capital, K_t , to produce:

$$Y_t = X_t K_t^{\alpha} N_t^{1-\alpha}$$

in which $\alpha \in (0,1)$ is capital's share

The log productivity, $x_t = \log(X_t)$, follows:

$$x_{t+1} = (1 - \rho)\bar{x} + \rho x_t + \sigma \epsilon_{t+1}$$

in which \bar{x} is the unconditional mean of x_t

Rescale \bar{x} to ensure the average MPL ≈ 1 in simulations

The matching function:

$$G(U_t,V_t) = rac{U_t V_t}{\left(U_t^\iota + V_t^\iota
ight)^{1/\iota}}$$

Continue to impose $V_t \ge 0$; constant unit cost of vacancy posting

Capital accumulates as:

$$K_{t+1} = (1 - \delta)K_t + \Phi(I_t, K_t)$$

in which δ the depreciation rate, I_t investment, and

$$\Phi(I_t, K_t) = \left[a_1 + \frac{a_2}{1 - 1/\nu} \left(\frac{I_t}{K_t} \right)^{1 - 1/\nu} \right] K_t, \qquad \nu > 0$$

The equilibrium wage, W_t , follows:

$$W_t = \eta \left[(1 - lpha) rac{Y_t}{N_t} + \kappa \theta_t
ight] + (1 - \eta) b$$

Dividends: $D_t \equiv Y_t - W_t N_t - \kappa V_t - I_t$

In equilibrium, the market clears:

$$C_t + I_t + \kappa V_t = Y_t$$

The intertemporal job creation condition:

$$\frac{\kappa}{q(\theta_t)} - \lambda_t = E_t \left[M_{t+1} \left((1 - \alpha) \frac{Y_{t+1}}{N_{t+1}} - W_{t+1} + (1 - s) \left(\frac{\kappa}{q(\theta_{t+1})} - \lambda_{t+1} \right) \right) \right]$$

The investment Euler equation:

$$\frac{1}{a_2} \left(\frac{I_t}{K_t} \right)^{1/\nu} = E_t \left[M_{t+1} \left(\alpha \frac{Y_{t+1}}{K_{t+1}} + \frac{1}{a_2} \left(\frac{I_{t+1}}{K_{t+1}} \right)^{1/\nu} (1 - \delta + a_1) + \frac{1}{\nu - 1} \frac{I_{t+1}}{K_{t+1}} \right) \right]$$

The Kuhn-Tucker conditions

Solve for $I(N_t, K_t, x_t)$ and $\mathcal{E}(N_t, K_t, x_t)$ from the optimality conditions

Discretize x_t with 17 grid points via the Rouwenhorst procedure

Finite element method, cubic splines, 100 nodes of N_t and on K_t

Tensor product of N_t and K_t on each x_t grid point

The Miranda-Fackler CompEcon toolbox for functional approximation and interpolation

Derivative-free fixed-point iteration with a small damping parameter to solve a system of 340,000 nonlinear equations

Calibrating the monthly log-linear solution to the postwar U.S. data

The time discount factor, $\beta = 0.99^{1/3}$

The persistence of log productivity, $\rho_{\rm x}=0.95^{1/3}$

Capital's weight, $\alpha=1/3$, the depreciation rate, $\delta=0.01$, and the separation rate, s=0.035

The elasticity of the matching function, ι , 1.25

Choose the conditional volatility of the log productivity, $\sigma = 0.0065$, to match the output volatility of 2.17% per annum in the model

Choose the elasticity in the installation function, $\nu=2$, to match the consumption volatility of 1.78% in the data

Calibrating the monthly log-linear solution to the postwar U.S. data

The workers' bargaining weight, η , 0.04

Flow value of unemployment activities, b, 0.95

The cost of vacancy posting, κ , 0.45

These values imply an average unemployment rate of 5.75% in the model, which is close to 5.87% in the data, and an unemployment volatility of 0.133, which is close to 0.132 in the data

Unit-free job creation equation errors:

$$e_t^V \equiv \left[\frac{\frac{\kappa}{q(\theta_t)} - \lambda_t}{E_t \left[\frac{\beta}{C_{t+1}} \left((1 - \alpha) \frac{Y_{t+1}}{N_{t+1}} - W_{t+1} + (1 - s) \left(\frac{\kappa}{q(\theta_{t+1})} - \lambda_{t+1} \right) \right) \right] - C_t \right] / C_t$$

Unit-free investment Euler equation errors:

$$e_{t}^{I} \equiv \left[\frac{\frac{1}{a_{2}} \left(\frac{I_{t}}{K_{t}} \right)^{1/\nu}}{E_{t} \left[\frac{\beta}{C_{t+1}} \left(\alpha \frac{Y_{t+1}}{K_{t+1}} + \frac{1}{a_{2}} \left(\frac{I_{t+1}}{K_{t+1}} \right)^{1/\nu} \left(1 - \delta + a_{1} \right) + \frac{1}{\nu-1} \frac{I_{t+1}}{K_{t+1}} \right) \right] / C_{t}.$$

Figure 9: Job creation equation errors in simulations, projection vs. loglinearization

Figure 9: Investment Euler equation errors in simulations, projection vs. loglinearization

Figure 10: Ergodic distribution, projection vs. loglinearization

Figure 11: Ergodic distribution, U_t , projection vs. loglinearization

Figure 11: Ergodic distribution, V_t , projection vs. loglinearization

Figure 11: Ergodic distribution, θ_t , projection vs. loglinearization

Table 3: Business cycle moments

	σ_Y	ρ_1^Y	$ ho_2^Y$	$ ho_3^Y$	$ ho_4^Y$	$\sigma_{\mathcal{C}}$	$ ho_1^{C}$	$ ho_2^{C}$	$ ho_3^{C}$	$ ho_4^{C}$
Data	1.78	0.34	0.07	-0.05	0.06	2.17	0.15	0.01	-0.06	0.02
Loglinear	1.72	0.19	-0.07	-0.06	-0.06	2.41	0.18	-0.08	-0.07	-0.07
2nd-order	3.08	0.23	-0.07	-0.07	-0.06	8.38	0.18	-0.12	-0.09	-0.07
Projection	3.26	0.21	-0.08	-0.06	-0.06	2.60	0.23	-0.06	-0.05	-0.05
	σ_{l}	$ ho_1^l$	$ ho_2^I$	$ ho_3^I$	$ ho_4^I$	E[U]				
Data	8.93	0.02	-0.16	-0.19	-0.10	5.87				
Loglinear	3.26	0.16	-0.11	-0.09	-0.08	5.75				
2nd-order	5.65	0.20	-0.10	-0.09	-0.07	16.40				
Projection	4.45	0.19	-0.10	-0.08	-0.07	10.75				
						10.75				

Table 4: Labor market moments

	U	V	θ	Y/N		U	V	θ	Y/N	
		D	ata			Loglinearization				
Std	0.132	0.134	0.263	0.012		0.133	0.167	0.355	0.011	
ho	0.901	0.909	0.881	0.773		0.815	0.537	0.759	0.746	
Correlation		-0.887	-0.830	-0.158	U		-0.536	-0.696	-0.881	
			0.930	0.350	V			0.566	0.782	
				0.240	θ				0.821	
	2ı	nd-order	perturbat	ion		Projection				
Std	0.238	1.222	0.770	0.031		0.158	0.158	0.254	0.010	
ho	0.852	0.611	0.720	0.779		0.844	0.588	0.763	0.657	
Correlation		0.061	-0.153	0.346	U		-0.359	-0.473	-0.337	
			0.859	0.795	V			0.899	0.983	
				0.692	θ				0.930	

Conclusion

Petrosky-Nadeau and Zhang (2017, Quantitative Economics)

An accurate global projection algorithm is critical for quantifying the basic moments of the Diamond–Mortensen–Pissarides model