#### **Lecture Notes**

Petrosky-Nadeau and Zhang (2017, Quantitative Economics, "Solving the Diamond-Mortensen-Pissarides Model Accurately")

Lu Zhang<sup>1</sup>

<sup>1</sup>Ohio State and NBER

FIN 8250 Ohio State, Autumn 2021 An accurate global projection algorithm is critical for quantifying the basic moments of the Diamond–Mortensen–Pissarides model

- Log linearization understates the mean and volatility of unemployment but overstates the volatility of labor market tightness and the unemployment-vacancy correlation
- Log linearization also understates the impulse responses in unemployment in recessions but overstates the responses in the market tightness in booms

## Outline

1 The Hagedorn-Manovskii Model

2 The Petrosky-Nadeau, Zhang, and Kuehn Model

# Outline

1 The Hagedorn-Manovskii Model

2 The Petrosky-Nadeau, Zhang, and Kuehn Model

A representative household with perfect consumption insurance: The household pools the income of all the members together before choosing per capita consumption and asset holdings

Risk neutral with a time discount factor  $\beta$ 

A representative firm uses labor as the single productive input

The matching function:

$$G(U_t, V_t) = \frac{U_t V_t}{\left(U_t^{\iota} + V_t^{\iota}\right)^{1/\iota}}$$

in which  $\iota > 0$ 

Define  $\theta_t \equiv V_t/U_t$  as the vacancy-unemployment (V/U) ratio

The job finding rate:

$$f_t = f(\theta_t) = \frac{G(U_t, V_t)}{U_t} = \frac{1}{(1 + \theta_t^{-\iota})^{1/\iota}}$$

The vacancy filling rate:

$$q_t = q( heta_t) = rac{G(U_t, V_t)}{V_t} = rac{1}{\left(1 + heta_t^\iota
ight)^{1/\iota}}$$

with  $q'(\theta_t) < 0$ 

The firm uses labor to produce output,  $Y_t$ :

$$Y_t = X_t N_t$$

Aggregate labor productivity,  $X_t$ , with  $x_t \equiv \log(X_t)$ , follows:

$$x_{t+1} = \rho x_t + \sigma \epsilon_{t+1}$$

in which  $\rho \in (0,1)$ ,  $\sigma > 0$ , and  $\epsilon_{t+1}$  an i.i.d. standard normal shock

Unit costs in posting vacancies:

$$\kappa_t = \kappa_K X_t + \kappa_W X_t^{\xi}$$

in which  $\kappa_K, \kappa_W, \xi > 0$ 

Environment

Employment,  $N_t$ , evolves as:

$$N_{t+1} = (1-s)N_t + q(\theta_t)V_t$$

in which vacancies  $V_t \geq 0$ 

The wage rate from a Nash bargaining process between the employed workers and the firm:

$$W_t = \eta \left( X_t + \kappa_t \theta_t \right) + (1 - \eta)b$$

in which  $\eta \in (0,1)$  the workers' relative bargaining weight and b the workers' flow value of unemployment activities

Dividends: 
$$D_t = X_t N_t - W_t N_t - \kappa_t V_t$$

Environment

The goods market clears:

$$C_t + \kappa_t V_t = X_t N_t$$

The intertemporal job creation condition:

$$\frac{\kappa_t}{q(\theta_t)} - \lambda_t = E_t \left[ \beta \left( X_{t+1} - W_{t+1} + (1-s) \left( \frac{\kappa_{t+1}}{q(\theta_{t+1})} - \lambda_{t+1} \right) \right) \right]$$

The Kuhn-Tucker conditions:

$$q(\theta_t)V_t \ge 0$$
,  $\lambda_t \ge 0$ , and  $\lambda_t q(\theta_t)V_t = 0$ 

Algorithm: Projection with parameterized expectations

Solve for labor market tightness,  $\theta_t = \theta(x_t)$ , and the multiplier function,  $\lambda_t = \lambda(x_t)$  from the intertemporal job creation condition

 $\theta(x_t)$  and  $\lambda(x_t)$  must also satisfy the Kuhn-Tucker condition

We approximate the conditional expectation in the right-hand side of the job creation condition as  $\mathcal{E}_t \equiv \mathcal{E}(x_t)$ 

After obtaining  $\mathcal{E}_t$ , we first calculate  $\tilde{q}(\theta_t) \equiv \kappa_t/\mathcal{E}_t$ 

If  $\tilde{q}(\theta_t) < 1$ , the nonnegativity constraint is not binding, we set  $\lambda_t = 0$  and  $q(\theta_t) = \tilde{q}(\theta_t)$ , and then solve  $\theta_t = q^{-1}(\tilde{q}(\theta_t))$ , in which  $q^{-1}(\cdot)$  is the inverse function of  $q(\cdot)$ 

If 
$$\tilde{q}(\theta_t) \geq 1$$
, we set  $\theta_t = 0$ ,  $q(\theta_t) = 1$ , and  $\lambda_t = \kappa_t - \mathcal{E}_t$ 

# The Hagedorn-Manovskii Model Algorithm, discrete state space

Approximate the persistent log productivity process,  $x_t$ , based on the Rouwenhorst (1995) method

Use 17 grid points to cover the values of  $x_t$ , which are precisely within four unconditional standard deviations above and below the unconditional mean of zero

The conditional expectation calculated via matrix multiplication

To obtain an initial guess of the  $\mathcal{E}(x_t)$  function, we use the model's loglinear solution via Dynare

Algorithm, continuous state space

Approximate the  $\mathcal{E}(x_t)$  function (within four unconditional standard deviations of  $x_t$  from its unconditional mean of zero) with tenth-order Chebychev polynomials

The Chebychev nodes obtained with the collocation method

Use the Miranda-Fackler (2002) CompEcon toolbox for function approximation and interpolation

The conditional expectation in the right hand side of the job creation equation computed with the Gauss-Hermite quadrature

Weekly calibration

The time discount factor,  $\beta$ ,  $0.99^{1/12}$ 

The persistence of log productivity,  $\rho$ , 0.9895, and its conditional volatility,  $\sigma$ , 0.0034

The workers' bargaining weight,  $\eta$ , 0.052

Flow value of unemployment activities, b, 0.955

The job separation rate, s, 0.0081

The elasticity of the matching function,  $\iota$ , 0.407

For the vacancy cost function, the capital cost parameter,  $\kappa_K$ , 0.474, the labor cost parameter,  $\kappa_W$ , 0.11, and the exponential parameter in the labor cost,  $\xi$ , 0.449

Figure 1: The conditional expectation and labor market tightness

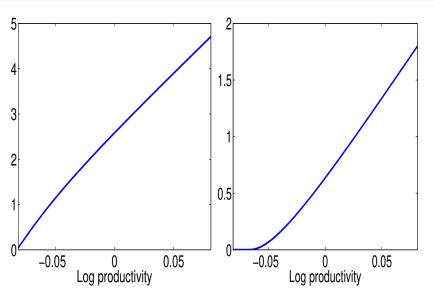


Table 1: Labor market moments

|             | U     | V        | $\theta$  | X      |          | U                | V      | $\theta$ | X      |  |
|-------------|-------|----------|-----------|--------|----------|------------------|--------|----------|--------|--|
|             |       | HM (200  | 8, Table  | 4)     |          | Loglinearization |        |          |        |  |
| Std         | 0.145 | 0.169    | 0.292     | 0.013  |          | 0.133            | 0.144  | 0.327    | 0.013  |  |
| ho          | 0.830 | 0.575    | 0.751     | 0.765  |          | 0.831            | 0.681  | 0.783    | 0.760  |  |
| Correlation |       | -0.724   | -0.916    | -0.892 | U        |                  | -0.848 | -0.864   | -0.927 |  |
|             |       |          | 0.940     | 0.904  | V        |                  |        | 0.858    | 0.985  |  |
|             |       |          |           | 0.967  | $\theta$ |                  |        |          | 0.890  |  |
|             | 2     | nd-order | perturbat | tion   |          | Projection       |        |          |        |  |
| Std         | 0.164 | 0.178    | 0.263     | 0.013  |          | 0.257            | 0.174  | 0.267    | 0.013  |  |
| ho          | 0.831 | 0.704    | 0.788     | 0.760  |          | 0.823            | 0.586  | 0.759    | 0.760  |  |
| Correlation |       | -0.791   | -0.794    | -0.795 | U        |                  | -0.567 | -0.662   | -0.699 |  |
|             |       |          | 0.946     | 0.973  | V        |                  |        | 0.890    | 0.909  |  |
|             |       |          |           | 0.993  | $\theta$ |                  |        |          | 0.996  |  |

Figure 2: Nonlinear dynamics, projection vs. loglinearization

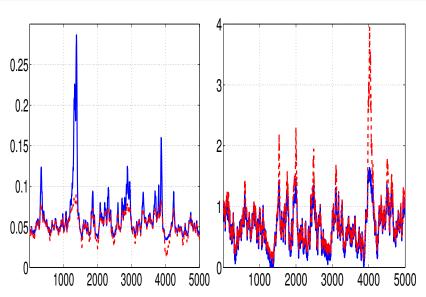


Figure 3: Ergodic distribution,  $U_t$ , projection vs. loglinearization

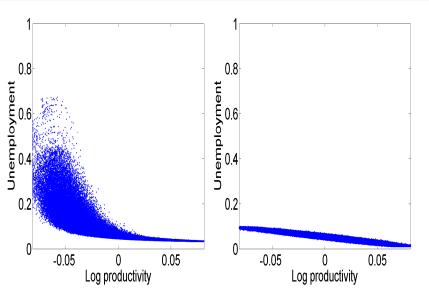


Figure 3: Ergodic distribution,  $V_t$ , projection vs. loglinearization

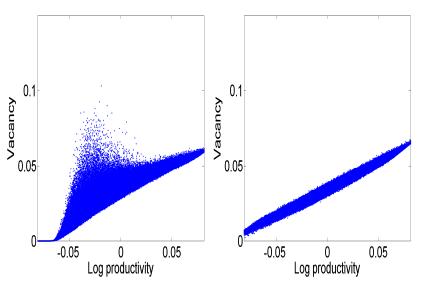


Figure 3: Ergodic distribution,  $\theta_t$ , projection vs. loglinearization

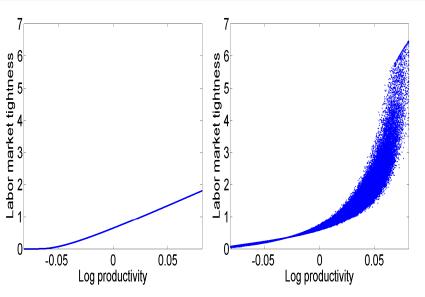


Figure 4: Nonlinear impulse response,  $U_t$ , projection vs. loglinearization

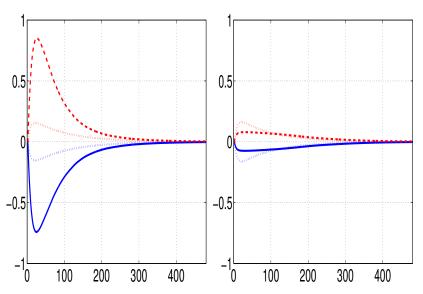


Figure 4: Nonlinear impulse response,  $\theta_t$ , projection vs. loglinearization

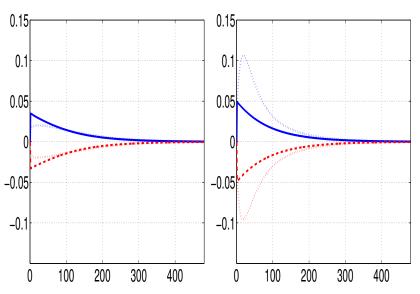


Figure 5: Euler equation errors in the state space

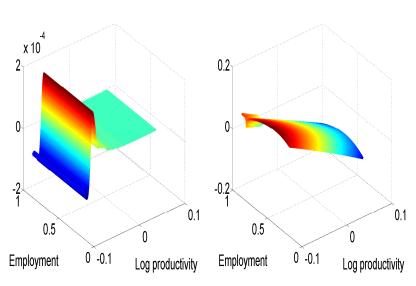
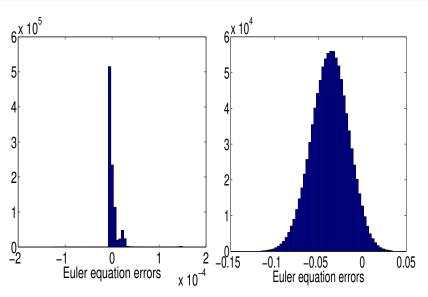


Figure 5: Euler equation errors in simulations



# Outline

1 The Hagedorn-Manovskii Model

2 The Petrosky-Nadeau, Zhang, and Kuehn Model

A representative household with log utility,  $log(C_t)$ 

A representative firm uses labor,  $N_t$ , and capital,  $K_t$ , to produce:

$$Y_t = X_t K_t^{\alpha} N_t^{1-\alpha}$$

in which  $\alpha \in (0,1)$  is capital's share

The log productivity,  $x_t = \log(X_t)$ , follows:

$$x_{t+1} = (1 - \rho)\bar{x} + \rho x_t + \sigma \epsilon_{t+1}$$

in which  $\bar{x}$  is the unconditional mean of  $x_t$ 

Rescale  $\bar{x}$  to ensure the average MPL  $\approx 1$  in simulations

The matching function:

$$G(U_t,V_t) = rac{U_t V_t}{\left(U_t^\iota + V_t^\iota
ight)^{1/\iota}}$$

Continue to impose  $V_t \ge 0$ ; constant unit cost of vacancy posting

Capital accumulates as:

$$K_{t+1} = (1 - \delta)K_t + \Phi(I_t, K_t)$$

in which  $\delta$  the depreciation rate,  $I_t$  investment, and

$$\Phi(I_t, K_t) = \left[ a_1 + \frac{a_2}{1 - 1/\nu} \left( \frac{I_t}{K_t} \right)^{1 - 1/\nu} \right] K_t, \qquad \nu > 0$$

The equilibrium wage,  $W_t$ , follows:

$$W_t = \eta \left[ (1 - lpha) rac{Y_t}{N_t} + \kappa \theta_t 
ight] + (1 - \eta) b$$

Dividends:  $D_t \equiv Y_t - W_t N_t - \kappa V_t - I_t$ 

In equilibrium, the market clears:

$$C_t + I_t + \kappa V_t = Y_t$$

The intertemporal job creation condition:

$$\frac{\kappa}{q(\theta_t)} - \lambda_t = E_t \left[ M_{t+1} \left( (1 - \alpha) \frac{Y_{t+1}}{N_{t+1}} - W_{t+1} + (1 - s) \left( \frac{\kappa}{q(\theta_{t+1})} - \lambda_{t+1} \right) \right) \right]$$

The investment Euler equation:

$$\frac{1}{a_2} \left( \frac{I_t}{K_t} \right)^{1/\nu} = E_t \left[ M_{t+1} \left( \alpha \frac{Y_{t+1}}{K_{t+1}} + \frac{1}{a_2} \left( \frac{I_{t+1}}{K_{t+1}} \right)^{1/\nu} (1 - \delta + a_1) + \frac{1}{\nu - 1} \frac{I_{t+1}}{K_{t+1}} \right) \right]$$

The Kuhn-Tucker conditions

Solve for  $I(N_t, K_t, x_t)$  and  $\mathcal{E}(N_t, K_t, x_t)$  from the optimality conditions

Discretize  $x_t$  with 17 grid points via the Rouwenhorst procedure

Finite element method, cubic splines, 100 nodes of  $N_t$  and on  $K_t$ 

Tensor product of  $N_t$  and  $K_t$  on each  $x_t$  grid point

The Miranda-Fackler CompEcon toolbox for functional approximation and interpolation

Derivative-free fixed-point iteration with a small damping parameter to solve a system of 340,000 nonlinear equations

#### Calibrating the monthly log-linear solution to the postwar U.S. data

The time discount factor,  $\beta = 0.99^{1/3}$ 

The persistence of log productivity,  $\rho_{\rm x}=0.95^{1/3}$ 

Capital's weight,  $\alpha=1/3$ , the depreciation rate,  $\delta=0.01$ , and the separation rate, s=0.035

The elasticity of the matching function,  $\iota$ , 1.25

Choose the conditional volatility of the log productivity,  $\sigma = 0.0065$ , to match the output volatility of 2.17% per annum in the model

Choose the elasticity in the installation function,  $\nu=2$ , to match the consumption volatility of 1.78% in the data



#### Calibrating the monthly log-linear solution to the postwar U.S. data

The workers' bargaining weight,  $\eta$ , 0.04

Flow value of unemployment activities, b, 0.95

The cost of vacancy posting,  $\kappa$ , 0.45

These values imply an average unemployment rate of 5.75% in the model, which is close to 5.87% in the data, and an unemployment volatility of 0.133, which is close to 0.132 in the data

Unit-free job creation equation errors:

$$e_t^V \equiv \left[ \frac{\frac{\kappa}{q(\theta_t)} - \lambda_t}{E_t \left[ \frac{\beta}{C_{t+1}} \left( (1 - \alpha) \frac{Y_{t+1}}{N_{t+1}} - W_{t+1} + (1 - s) \left( \frac{\kappa}{q(\theta_{t+1})} - \lambda_{t+1} \right) \right) \right] - C_t \right] / C_t$$

Unit-free investment Euler equation errors:

$$e_{t}^{I} \equiv \left[ \frac{\frac{1}{a_{2}} \left( \frac{I_{t}}{K_{t}} \right)^{1/\nu}}{E_{t} \left[ \frac{\beta}{C_{t+1}} \left( \alpha \frac{Y_{t+1}}{K_{t+1}} + \frac{1}{a_{2}} \left( \frac{I_{t+1}}{K_{t+1}} \right)^{1/\nu} \left( 1 - \delta + a_{1} \right) + \frac{1}{\nu-1} \frac{I_{t+1}}{K_{t+1}} \right) \right] / C_{t}.$$

Figure 9: Job creation equation errors in simulations, projection vs. loglinearization

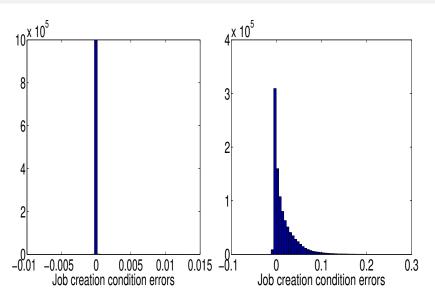


Figure 9: Investment Euler equation errors in simulations, projection vs. loglinearization

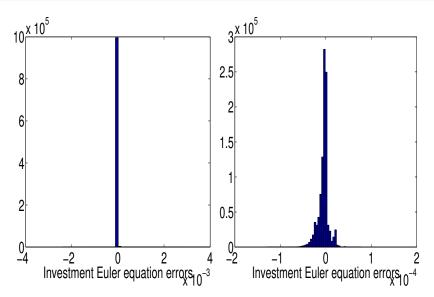


Figure 10: Ergodic distribution, projection vs. loglinearization

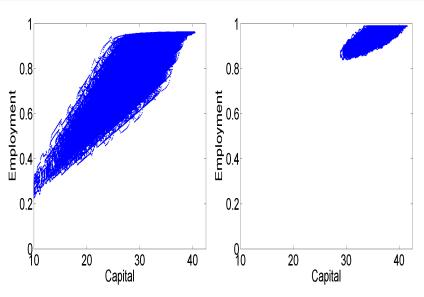


Figure 11: Ergodic distribution,  $U_t$ , projection vs. loglinearization

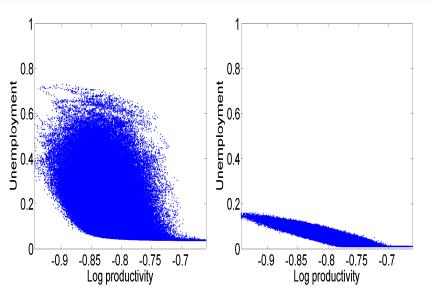


Figure 11: Ergodic distribution,  $V_t$ , projection vs. loglinearization

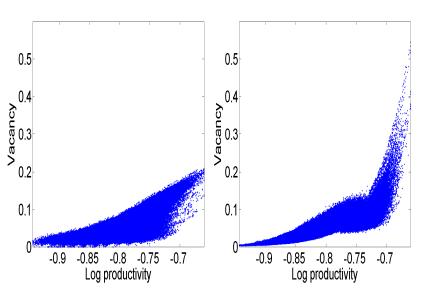


Figure 11: Ergodic distribution,  $\theta_t$ , projection vs. loglinearization

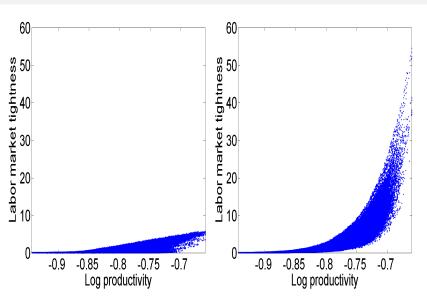


Table 3: Business cycle moments

|            | $\sigma_Y$   | $\rho_1^Y$ | $ ho_2^Y$ | $ ho_3^Y$ | $ ho_4^Y$ | $\sigma_{\mathcal{C}}$ | $ ho_1^{C}$ | $ ho_2^{C}$ | $ ho_3^{C}$ | $ ho_4^{C}$ |
|------------|--------------|------------|-----------|-----------|-----------|------------------------|-------------|-------------|-------------|-------------|
| Data       | 1.78         | 0.34       | 0.07      | -0.05     | 0.06      | 2.17                   | 0.15        | 0.01        | -0.06       | 0.02        |
| Loglinear  | 1.72         | 0.19       | -0.07     | -0.06     | -0.06     | 2.41                   | 0.18        | -0.08       | -0.07       | -0.07       |
| 2nd-order  | 3.08         | 0.23       | -0.07     | -0.07     | -0.06     | 8.38                   | 0.18        | -0.12       | -0.09       | -0.07       |
| Projection | 3.26         | 0.21       | -0.08     | -0.06     | -0.06     | 2.60                   | 0.23        | -0.06       | -0.05       | -0.05       |
|            | $\sigma_{l}$ | $ ho_1^l$  | $ ho_2^I$ | $ ho_3^I$ | $ ho_4^I$ | E[U]                   |             |             |             |             |
| Data       | 8.93         | 0.02       | -0.16     | -0.19     | -0.10     | 5.87                   |             |             |             |             |
| Loglinear  | 3.26         | 0.16       | -0.11     | -0.09     | -0.08     | 5.75                   |             |             |             |             |
| 2nd-order  | 5.65         | 0.20       | -0.10     | -0.09     | -0.07     | 16.40                  |             |             |             |             |
| Projection | 4.45         | 0.19       | -0.10     | -0.08     | -0.07     | 10.75                  |             |             |             |             |
|            |              |            |           |           |           | 10.75                  |             |             |             |             |

Table 4: Labor market moments

|             | U     | V        | $\theta$  | Y/N    |          | U                | V      | $\theta$ | Y/N    |  |
|-------------|-------|----------|-----------|--------|----------|------------------|--------|----------|--------|--|
|             |       | D        | ata       |        |          | Loglinearization |        |          |        |  |
| Std         | 0.132 | 0.134    | 0.263     | 0.012  |          | 0.133            | 0.167  | 0.355    | 0.011  |  |
| ho          | 0.901 | 0.909    | 0.881     | 0.773  |          | 0.815            | 0.537  | 0.759    | 0.746  |  |
| Correlation |       | -0.887   | -0.830    | -0.158 | U        |                  | -0.536 | -0.696   | -0.881 |  |
|             |       |          | 0.930     | 0.350  | V        |                  |        | 0.566    | 0.782  |  |
|             |       |          |           | 0.240  | $\theta$ |                  |        |          | 0.821  |  |
|             | 2ı    | nd-order | perturbat | ion    |          | Projection       |        |          |        |  |
| Std         | 0.238 | 1.222    | 0.770     | 0.031  |          | 0.158            | 0.158  | 0.254    | 0.010  |  |
| ho          | 0.852 | 0.611    | 0.720     | 0.779  |          | 0.844            | 0.588  | 0.763    | 0.657  |  |
| Correlation |       | 0.061    | -0.153    | 0.346  | U        |                  | -0.359 | -0.473   | -0.337 |  |
|             |       |          | 0.859     | 0.795  | V        |                  |        | 0.899    | 0.983  |  |
|             |       |          |           | 0.692  | $\theta$ |                  |        |          | 0.930  |  |

#### Conclusion

Petrosky-Nadeau and Zhang (2017, Quantitative Economics)

An accurate global projection algorithm is critical for quantifying the basic moments of the Diamond–Mortensen–Pissarides model